The big five theorems of elementary functional analysis

Alex Fu

2023-01-01

Theorem 1 (Hahn–Banach theorem, or HBT).

Let $(X, \|\cdot\|)$ be a real normed vector space, V a subspace of X, $p: X \to [0, \infty)$ a sublinear function, and $\ell: V \to \mathbb{R}$ a linear functional such that $\ell \leq (p \upharpoonright V)$. Then there exists an extension $L: X \to \mathbb{R}$ of ℓ such that L is linear, $(L \upharpoonright V) \equiv \ell$, and $L \leq p$.

Proof. Zorn's lemma.

Theorem 2 (Uniform boundedness principle, or UBP).

Let $(X, \|\cdot\|)$ be a real Banach space, and let $S = {\ell_i}_{i \in I}$ be a collection of linear functionals on X, i.e. $S \subseteq X^*$. If S is pointwise bounded, then S is uniformly bounded in $\|\cdot\|_{X^*}$. More specifically, if for all $x \in X$, there exists $C_x < \infty$ such that $|\ell_i(x)| \le C_x$ for all $i \in I$, then there exists a constant B for which $\|\ell_i\|_{X^*} \le B$ for all $i \in I$.

Theorem 3 (Open mapping theorem, or OMT).

Let X and Y be Banach spaces, and let $T: X \to Y$ be a bounded surjective linear mapping. Then T is an open map: for any open ball $B \subseteq X$, its image T(B) is open in Y.

Theorem 4 (Closed graph theorem, or CGT).

Let X and Y be normed vector spaces, and let $T: X \to Y$ be a bounded linear mapping. Then the graph of T, $\{(x, T(x)) : x \in X\}$, is a closed subset of $X \times Y$ with the product topology.

Proof. An easy consequence of the OMT. We can check that the norm $||(x, T(x))||_G = ||x||_X + ||T(x)||_Y$ makes G = graph(T) a Banach space. Then consider the inverse of the bounded bijective linear map $(x, T(x)) \rightarrow x$; the inverse is bounded by the OMT.

Theorem 5 (Alaoglu's theorem).

Let $(X, \|\cdot\|)$ be a normed vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then the closed unit ball of the dual space $\{\ell \in X^* : \|\ell\|_{X^*} \leq 1\}$ is compact with respect to the weak-* topology.