# A proof of the De Moivre-Laplace Central Limit Theorem 

Alex Fu

2023-01-03

Theorem 1 (De Moivre-Laplace Central Limit Theorem, or CLT).
Let $X_{1}, X_{2}, \ldots$ be i.i.d. Rademacher random variables, which are $\pm 1$ with probability $\frac{1}{2}$ each. Then $\frac{1}{\sqrt{n}} S_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ converges in distribution to a standard normal $Z \sim \mathcal{N}(0,1)$.

The CLT gets its name as a limit theorem central to probability and statistics, not because it is a theorem about central limits. The De Moivre-Laplace CLT was historically the first CLT to be shown. The sums $\left(S_{n}\right)_{n \in \mathbb{N}}$ above form a simple random walk on the integers $\mathbb{Z}$ - one of the first random processes to be studied in probability theory.

Lemma 1 (Standard normal PDF).
The probability density function of a standard normal random variable $Z \sim \mathcal{N}(0,1)$ is

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Lemma 2 (Stirling's approximation).
The following quantities are asymptotic: their ratio tends to 1 as $n \rightarrow \infty$.

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} .
$$

Lemma 3 (Continuization in distribution).
Let $\left(Z_{n}\right)_{n=1}^{\infty}$ be a sequence of $\mathbb{Z}$-valued random variables, $\delta_{n} \downarrow 0$ a sequence of positive constants in $\mathbb{R}$, and $f$ a probability density function. If for all $x$ in a Lebesgue-almost sure set,

$$
\mathbb{P}\left(Z_{n}=z_{n}\right) / \delta_{n} \rightarrow f(x)
$$

for any sequence of integers $\left(z_{n}\right)_{n=1}^{\infty}$ for which $z_{n} \delta_{n} \rightarrow x$, then $Z_{n} \delta_{n}$ converges in distribution to a random variable $X$ with density $f$.

Lemma 4 (Generalized definition of $e$ ).
Let $x_{n} \rightarrow 0$ and $y_{n} \rightarrow \infty$ be such that $x_{n} y_{n} \rightarrow c$. Then $\left(1+x_{n}\right)^{y_{n}} \rightarrow e^{c}$.

Lemma 5 (Slutsky's theorem).
Suppose that $a_{n} \rightarrow a, b_{n} \rightarrow b$, and $X_{n} \xrightarrow{\text { d }} X$. Then $a_{n} X_{n}+b_{n}$ converges in distribution to $a X+b$.

We will omit the proofs of the lemmas above.

Proof of Theorem 1. We first observe that $S_{n}$ and $n$ have the same parity, as $S_{0}=0$ and $S_{n+1}=S_{n} \pm 1$. Let us work with the distribution of $S_{2 n}$. By counting the number of possible configurations,

$$
\begin{aligned}
\mathbb{P}\left(S_{2 n}=2 k\right) & =\binom{2 n}{n-k} 2^{-2 n} \\
& =\frac{(2 n)!}{(n+k)!(n-k)!} 2^{-2 n}
\end{aligned}
$$

By Lemma 2 (Stirling's approximation),

$$
\begin{aligned}
& \sim \frac{(2 n)^{2 n} e^{-2 n} \sqrt{2 \pi \cdot 2 n}}{(n+k)^{n+k} e^{-n-k} \sqrt{2 \pi(n+k)} \cdot(n-k)^{n-k} e^{-n+k} \sqrt{2 \pi(n-k)}} \cdot 2^{-2 n} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{n^{2 n} \sqrt{2 n}}{(n+k)^{n+k}(n-k)^{n-k}} \frac{1}{\sqrt{(n+k)(n-k)}} \\
& =\frac{1}{\sqrt{\pi n}} \frac{1}{\left(1+\frac{k}{n}\right)^{n+k}\left(1-\frac{k}{n}\right)^{n-k}} \frac{1}{\sqrt{\left(1+\frac{k}{n}\right)\left(1-\frac{k}{n}\right)}}
\end{aligned}
$$

Stirling's approximation above requires $n-k \rightarrow \infty$, so let us choose $k=x \sqrt{\frac{n}{2}}$ so that $\frac{2 k}{\sqrt{2 n}} \rightarrow x$, with the intention of invoking Lemma 3.

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi n}} \frac{\left(1-\frac{k}{n}\right)^{k}}{\left(1-\frac{k^{2}}{n^{2}}\right)^{n+\frac{1}{2}}\left(1+\frac{k}{n}\right)^{k}} \\
& \sim \frac{1}{\sqrt{\pi n}}\left(1-\frac{x^{2}}{2 n}\right)^{-n}\left(1-\frac{x}{\sqrt{2 n}}\right)^{x \sqrt{2 n}}\left(1+\frac{x}{\sqrt{2 n}}\right)^{-x \sqrt{2 n}}
\end{aligned}
$$

By Lemma 4, as $n \rightarrow \infty$, this tends to

$$
=\frac{1}{\sqrt{\pi n}} e^{-x^{2} / 2}
$$

Invoking Lemma 3 for $Z_{n}=\frac{1}{2} S_{2 n}$ and $\delta_{n}=\frac{2}{\sqrt{2 n}}$, we find that $S_{2 n}$ converges in distribution to $\mathcal{N}(0,1)$. To extend this result to the full sequence $\left(S_{n}\right)_{n=1}^{\infty}$, we write

$$
\frac{S_{2 n+1}}{\sqrt{2 n+1}}=\frac{\sqrt{2 n}}{\sqrt{2 n+1}} \cdot \frac{S_{2 n}}{\sqrt{2 n}}+\frac{X_{2 n+1}}{\sqrt{2 n+1}}
$$

and use Lemma 5 to conclude our proof.

This proof was quite combinatorial in nature: it leveraged the symmetry in the situation to find $\mathbb{P}\left(S_{2 n}=\right.$ $2 k$ ) by counting, then related it to $\Phi(x)$ by asymptotic analysis, finishing with the key Lemma 3 . A more general CLT for i.i.d. random variables with finite variance can be proven using the method of Fourier transforms or characteristic functions $\phi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)$. Further generalizations of the CLT to weakly dependent random variables make use of other techniques, such as the Lindeberg exchange trick, which we will not introduce here.

This note was adapted largely from Professor Shirshendu Ganguly's fall 2022 offering of Math C218A / Stat C205A at UC Berkeley.

