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Theorem 1 (De Moivre–Laplace Central Limit Theorem, or CLT).

Let X1, X2, . . . be i.i.d. Rademacher random variables, which are ±1 with probability 1
2 each. Then

1√
n
Sn := 1√

n

∑n
i=1Xi converges in distribution to a standard normal Z ∼ N (0, 1).

The CLT gets its name as a limit theorem central to probability and statistics, not because it is a theorem
about central limits. The De Moivre–Laplace CLT was historically the first CLT to be shown. The sums
(Sn)n∈N above form a simple random walk on the integers Z — one of the first random processes to be
studied in probability theory.

Lemma 1 (Standard normal PDF).

The probability density function of a standard normal random variable Z ∼ N (0, 1) is

Φ(x) =
1√
2π

e−x2/2.

Lemma 2 (Stirling’s approximation).

The following quantities are asymptotic: their ratio tends to 1 as n → ∞.

n! ∼
√
2πn

(n
e

)n
.

Lemma 3 (Continuization in distribution).

Let (Zn)
∞
n=1 be a sequence of Z-valued random variables, δn ↓ 0 a sequence of positive constants in

R, and f a probability density function. If for all x in a Lebesgue-almost sure set,

P(Zn = zn)/δn → f(x)
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for any sequence of integers (zn)
∞
n=1 for which znδn → x, then Znδn converges in distribution to a

random variable X with density f .

Lemma 4 (Generalized definition of e).

Let xn → 0 and yn → ∞ be such that xnyn → c. Then (1 + xn)
yn → ec.

Lemma 5 (Slutsky’s theorem).

Suppose that an → a, bn → b, and Xn
d→ X. Then anXn+ bn converges in distribution to aX+ b.

We will omit the proofs of the lemmas above.

Proof of Theorem 1. We first observe that Sn and n have the same parity, as S0 = 0 and Sn+1 = Sn±1.
Let us work with the distribution of S2n. By counting the number of possible configurations,

P(S2n = 2k) =

(
2n

n− k

)
2−2n

=
(2n)!

(n+ k)!(n− k)!
2−2n

By Lemma 2 (Stirling’s approximation),

∼ (2n)2ne−2n
√
2π · 2n

(n+ k)n+ke−n−k
√
2π(n+ k) · (n− k)n−ke−n+k

√
2π(n− k)

· 2−2n

=
1√
2π

n2n
√
2n

(n+ k)n+k(n− k)n−k

1√
(n+ k)(n− k)

=
1√
πn

1

(1 + k
n)

n+k(1− k
n)

n−k

1√
(1 + k

n)(1−
k
n)

Stirling’s approximation above requires n− k → ∞, so let us choose k = x
√

n
2 so that 2k√

2n
→ x, with

the intention of invoking Lemma 3.

=
1√
πn

(1− k
n)

k

(1− k2

n2 )
n+ 1

2 (1 + k
n)

k

∼ 1√
πn

(
1− x2

2n

)−n(
1− x√

2n

)x
√
2n(

1 +
x√
2n

)−x
√
2n

By Lemma 4, as n → ∞, this tends to

=
1√
πn

e−x2/2.
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Invoking Lemma 3 for Zn = 1
2S2n and δn = 2√

2n
, we find that S2n converges in distribution to N (0, 1).

To extend this result to the full sequence (Sn)
∞
n=1, we write

S2n+1√
2n+ 1

=

√
2n√

2n+ 1
· S2n√

2n
+

X2n+1√
2n+ 1

and use Lemma 5 to conclude our proof.

This proof was quite combinatorial in nature: it leveraged the symmetry in the situation to find P(S2n =
2k) by counting, then related it to Φ(x) by asymptotic analysis, finishing with the key Lemma 3. A more
general CLT for i.i.d. random variables with finite variance can be proven using the method of Fourier
transforms or characteristic functions ϕX(t) = E(eitX). Further generalizations of the CLT to weakly
dependent random variables make use of other techniques, such as the Lindeberg exchange trick, which
we will not introduce here.

This note was adapted largely from Professor Shirshendu Ganguly’s fall 2022 offering of Math C218A /
Stat C205A at UC Berkeley.
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