The construction of a Vitali set

Alex Fu

2023-01-04

Not all subsets of \mathbb{R} have a well-defined notion of length, or Lebesgue measure. The existence of such a pathological *nonmeasurable set* is one of the unintuitive consequences of assuming the axiom of choice.

Write I = [0, 1]. Consider the set of equivalence classes of $I \mod (\mathbb{Q}, +)$. In other words, consider I/\sim , where $x \sim y$ iff $x - y \in \mathbb{Q}$. Let $E \subseteq I$ consist of one representative chosen from each equivalence class in I, which we can define by the axiom of choice. Observe that E is uncountable, and

$$[0,1] = \bigcup_{q \in \mathbb{Q} \cap [0,1]} (E+q) \bmod 1$$

is a countable partition of I into translations of E. Note that $E+q = \{x + q : x \in E\}$, and length(E) = length(E+q) for any $q \in \mathbb{Q}$ by the translation-invariance of Lebesgue measure. Let us check that this is indeed a partition: we claim that $E+q_1$ and $E+q_2$ are disjoint whenever $q_1 \neq q_2$. Suppose not; then there exists $x + q_1 = y + q_2$, $x, y \in E$, and in particular $x \sim y$. But $q_1 \neq q_2$ implies that $x \neq y$, and by our construction of E, x and y cannot belong to the same equivalence class — contradiction.

Thus, by the countable additivity of the Lebesgue measure m on [0, 1], we have

$$\mathbf{m}([0,1]) = \sum_{q \in \mathbb{Q} \cap [0,1]} \mathbf{m}(E + q \bmod 1) = \sum_{q \in \mathbb{Q} \cap [0,1]} \mathbf{m}(E).$$

We claim that the Vitali set E is not m-measurable. If m(E) = 0, then $m([0,1]) = 0 \neq 1$. However, if m(E) > 0, then $m([0,1]) = +\infty$, again contradicting m([0,1]) = 1. Therefore we cannot assign m(E) in a way that preserves all of translation-invariance, countable additivity, and m([0,1]) = 1.

The above is also the same proof that there is no uniform probability measure on a countable set $X \ni x_*$: $\mathbb{P}(X) = \sum_{x \in X} \mathbb{P}(\{x\}) = \sum_{x \in X} \mathbb{P}(\{x_*\}) = 1$ means $\mathbb{P}(\{x_*\})$ cannot be zero or nonzero, i.e. cannot be defined at all. Informally, there can be no set whose measure is " $\frac{1}{\infty}$."

The existence of a nonmeasurable set motivates our restriction of the domain of a measure to a σ -algebra instead of the full power set. A more complex example can be found as part of the *Banach–Tarski paradox*.