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To rigorously define and suitably generalize the notions of length, area, and volume is one of the basic
motivations for all of measure theory. Intuitively, length, area, and volume are very similar in nature —
a measurement of “how many points there are” that differs from cardinality or counting — and the only
notable difference between the three is the number of dimensions in which they apply. We will show that
length, area, and volume are indeed just special cases of the n-dimensional Lebesgue measure on Rn.

Our construction of the Lebesgue measure follows the general blueprint of starting with the most natural
definition on a simple class of sets, then extending to larger classes of sets in a natural way that preserves
the desired properties of a measure. The existence of nonmeasurable sets like the Vitali set implores us
to be careful in this multistage development.

1 The semialgebra of half-open half-closed intervals

Throughout, let Ω be a set assumed to be nonempty for convenience. A family F on Ω is a collection
of subsets of Ω, i.e. F ⊆ 2Ω; we will also require that families are nonempty.

Definition 1 (Semialgebra).

A family S is a semialgebra on Ω if it satisfies the following.

1. Empty set. ∅ ∈ S.

2. Closure under finite intersection. If A1, . . . , An ∈ S, then
⋂n

i=1Ai ∈ S as well.

3. Semiclosure under complement. If A ∈ S, then there exist disjoint B1, . . . , Bn ∈ S such that
the complement Ac =

⊔n
i=1Bi.

Definition 2 (Premeasure).

A set function µ : S → [0,∞] defined on a semialgebra S is called a premeasure on S if it satisfies
the following.
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1. Empty set. µ(∅) = 0.

2. Countable additivity, or σ-additivity. If A1, A2, . . . ∈ S are disjoint, and
⊔∞

i=1Ai ∈ S, then

µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

What motivates the definitions above? The most basic property we want in the Lebesgue measure on R
is that it measures the length of intervals:

m((a, b)) = m((a, b]) = m([a, b)) = m([a, b]) := b− a

for all a, b ∈ [−∞,+∞], a ≤ b. We can set m(∅) := 0 by definition, or by the convention of (a, b) = ∅
for a ≥ b. We will also abuse notation slightly by writing (a,+∞] = (a,+∞), and likewise for [−∞, b).

However, this is not yet a very meaningful definition of m. The countable union of disjoint open intervals
is never an interval, and likewise for disjoint closed intervals. However, the half-open half-closed intervals
fit together like puzzle pieces: the open endpoint of one interlocks perfectly with the closed endpoint of
another. We can thus check that m is indeed countably additive on these intervals; otherwise, countable
additivity is not even well-defined, as sets like

⊔∞
i=1(ai, bi) are never in the domain of m(·).

The choice between (a, b] and [a, b) is mostly arbitrary; we will take (a, b], since probability theory prefers
sets of the form (−∞, x] for its cumulative distribution functions F (x) := µ((−∞, x]). We define

S := {(a, b] : a, b ∈ [−∞,+∞]} .

In fact, the properties of (a, b] are what motivate the definition of a semialgebra in the first place.

Proposition 1 (The half-open half-closed intervals form a semialgebra).

S above is a semialgebra.

Proof. We perform some regular checks.

1. ∅ ∈ S per the convention that (a, b] = ∅ for a > b.

2. It suffices to show closure under pairwise intersections. Let (a1, b1], (a2, b2] ∈ S. Then (a1, b1] ∩
(a2, b2] = (max{a1, a2},min{b1, b2}] ∈ S, where the intersection may be empty.

3. Let (a, b] ∈ S. Then (a, b]c = (−∞, a] ⊔ (b,+∞] is a disjoint union of intervals in S.

The significance of Proposition 1 lies in a later theorem which states that premeasures on semialgebras
can be extended to full-fledged measures on σ-algebras, where this extension is unique in the special case
of σ-finiteness (which holds for Rn). To invoke this result, we need the following check:
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Proposition 2 (Length is a premeasure).

Let S be the semialgebra of half-open half-closed intervals in R, and let m: S → [0,∞] be given by
m((a, b]) := b− a. Then m is a premeasure on S.

Proof. Let us first show that m is finitely additive on S. Let A1, . . . , An ∈ S be disjoint, and suppose
that A =

⊔n
i=1Ai ∈ S as well, which allows us to write Ai := (ai, bi] and A := (a, b]. We may further

assume that a1 ≤ b1 = a2 ≤ b2 = a3 ≤ · · · ≤ bn by reindexing the Ai without loss of generality. Then

n∑
i=1

m(Ai) =

n∑
i=1

(bi − ai) = bn − a1 = b− a = m(A).

Now, suppose that (a, b] =
⊔∞

i=1(ai, bi] ∈ S. The infinite case is tricky because we cannot rearrange the
(ai, bi] such that a1 ≤ b1 = a2 ≤ · · · willy-nilly. However, we can break up the equality

b− a =
∞∑
i=1

(bi − ai)

into two inequalities, then prove each direction separately by reducing to the finite case.

• The easier inequality is b− a ≥
∑∞

i=1(bi− ai): it suffices to show b− a ≥
∑n

i=1(bi− ai) and pass
to the limit as n → ∞. For finitely many intervals, we may assume a1 ≤ b1 = a2 ≤ · · · = an ≤ bn
without loss of generality. Then

n∑
i=1

(bi − ai) = bn −
n∑

i=2

(ai − bi−1)− a1 ≤ bn − a1 ≤ b− a,

where each ai − bi−1 ≤ 0 and a ≤ a1 ≤ bn ≤ b.

• For the harder inequality, we give ourselves an epsilon’s worth of room. It suffices to show b− a ≤∑∞
i=1(bi−ai)+ ε for any ε > 0, as we can take ε ↓ 0. We will reduce to the finite case by cleverly

using the compactness of closed intervals in R. First, the epsilon allows us to approximate

[a′, b] ⊆ (a, b] ⊆
∞⋃
i=1

(ai, bi] ⊆
∞⋃
i=1

(ai, b
′
i),

where a′ = a + ε
2 and b′i = bi +

ε
2i+1 . We write εi :=

ε
2i+1 for convenience, noting

∑∞
i=1 εi =

ε
2 .

With this approximation, we invoke the compactness of [a′, b] to find a finite subcover such that

[a′, b] ⊆
n⋃

k=1

(aik , b
′
ik
).

Now we can reindex these open intervals. Let O1 be an interval (ai1 , b
′
i1
) containing a′. If b′i1 > b,

then we are done; otherwise, let O2 be any (ai2 , b
′
i2
) containing b′i1 , and continue inductively. This

process clearly terminates in finitely many steps, resulting in O1, . . . , On with interlaced endpoints

aik < aik+1
< b′ik < b′ik+1

.
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From here, the rest of the proof proceeds naturally.

n∑
k=1

(b′ik − aik) = b′in −
n∑

k=2

(aik − b′ik−1
)− ai1 ≥ b′in − ai1 = b− a− ε

2

using the fact that [a′, b] ⊆
⋃n

k=1Ok and a′ = a+ ε
2 . Using the other approximation b′i = bi + εi,

n∑
k=1

(b′ik − aik) ≤
∞∑
i=1

(b′i − ai) =

∞∑
i=1

(bi − ai) +
ε

2
.

Combining these two inequalities, we are done.

2 The algebra of finite disjoint unions

For a premeasure µ on a semialgebra S, the natural next step is to extend µ by defining

µ

(
n⊔

i=1

Ai

)
:=

n∑
i=1

µ(Ai)

for disjoint A1, . . . , An ∈ S. This in fact extends µ to the algebra generated by S, the set of all finite
unions of S.

Definition 3 (Algebra).

A family A is an algebra on Ω if it satisfies the following.

1. Nonempty. ∅ ∈ A.

2. Closure under finite union. If A1, . . . , An ∈ A, then
⋃n

i=1Ai ∈ A as well.

3. Closure under complement. If A ∈ A, then Ac ∈ A as well.

It is clear that Ω ∈ A, and closure under finite intersection holds by De Morgan’s laws. Algebras are also
semialgebras, but not the converse, though we can find a fairly canonical algebra from any semialgebra:

Proposition 3 (The algebra generated by a semialgebra).

Let S be a semialgebra. Then the algebra A generated by S, i.e. the minimal algebra containing S,
is precisely the set of all finite (disjoint) unions of elements in S.

Proof. Let F be the set of all finite unions of elements in S. Any algebra containing S must contain F ,
so it suffices to show that F is itself an algebra, in which case it is the minimal algebra containing S.

1. ∅ ∈ F because ∅ ∈ S, or because ∅ is the empty union.
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2. A finite union of finite unions remains a finite union, so F is closed under finite unions.

3. Let A ∈ F , where A =
⋃n

i=1Ai for some A1, . . . , An ∈ S. By De Morgan’s laws, Ac =
⋂n

i=1A
c
i .

Now, by the properties of a semialgebra,

Ac =
n⋂

i=1

mi⊔
j=1

Bi,j

for some Bi,j ∈ S. We leave it as an exercise in managing indices to show that Ac is a (disjoint)
union of various intersections of Bi,j , which belong to S.

Lastly, let us check that F is equal to the set of all finite disjoint unions in S. We observe that we can
disjointize any finite union:

n⋃
i=1

Ai = A1 ⊔ (A2 \A1) ⊔ (A3 \ (A1 ∪A2)) ⊔ · · · .

If A1, . . . , An ∈ S, then it is clear that the disjointized Bi = Ai \
⋃i−1

j=1Aj = Ai ∩
⋂i−1

j=1A
c
j belong to S

as well. In other words, every A ∈ F can be expressed as a finite disjoint union in S.

With Proposition 3, the extension of m to the algebra generated by S is well-defined. What’s more, we
preserve countable additivity.

Proposition 4 (Extension of premeasure to algebra remains a premeasure).

Let µ be a premeasure on the semialgebra S, and extend µ to the algebra A generated by S by

µ̄

(
n⊔

i=1

Ai

)
:=

n∑
i=1

µ(Ai).

Then µ̄ is a premeasure on A; in particular, µ̄ is countably additive.

Proof. Let A1, A2, . . . ∈ A be disjoint, and suppose A =
⊔∞

i=1Ai ∈ A. By Proposition 3, for each i,
there exist disjoint Bi,1, . . . , Bi,ni ∈ S such that Ai =

⊔ni
j=1Bi,j . Then

∞∑
i=1

µ̄(Ai) =

∞∑
i=1

ni∑
j=1

µ(Bi,j).

We also observe that A =
⊔

i,j Bi,j , so µ̄(A) =
∑

i,j µ(Bi,j). By Tonelli’s theorem, since the summands
are all nonnegative, the two series are equal:

µ̄(A) =

∞∑
i=1

µ̄(Ai).
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3 The Borel σ-algebra on R

While going from a semialgebra to an algebra admits a very simple characterization, there is, in general,
no constructive way to describe the σ-algebra generated by an algebra.

Definition 4 (σ-algebra).

A family Σ is a σ-algebra on Ω if it satisfies the following.

1. Nonempty. ∅,Ω ∈ Σ.

2. Closure under countable union. If A1, A2, . . . ∈ Σ, then
⋃∞

i=1Ai ∈ Σ as well.

3. Closure under complement. If A ∈ Σ, then Ac ∈ Σ as well.

The pair (Ω,Σ) is called a measurable space.

By De Morgan’s laws, σ-algebras are also closed under countable intersection. The σ-algebra generated
by an algebra A is, per usual, the minimal σ-algebra containing A.

One might ask if m is countably additive on the algebra A generated by S, why not stop there? Why do
we need to extend m to a σ-algebra? For one, σ-algebras are vastly richer classes of sets than algebras.

Proposition 5 (The Borel σ-algebra).

The σ-algebra generated by the set of half-open half-closed intervals S is called the Borel σ-algebra
B on R, and contains all open and closed sets of R, all countable unions and intersections of those,
and all countable unions and intersections of those, . . . , so on and so forth.

Note that “all countable unions of countable intersections of . . . in A” still does not encompass all of B.
The introduction of countable infinity to the definition clearly introduces a greater level of complexity to
the sets we can measure. For this reason, and the fact that we most often want to work with sequences
of sets, that we require countable unions and intersections to be well-defined operations, that we require
measures be countably additive instead of simply finitely additive.

As a side note, while σ-algebras encode the notion of measurability in general, in probability spaces, they
capture the more specific idea of information. A measurable set is renamed an event, whose probability we
should be able to measure or determine. Countability is key to describing various forms of convergence,
which apply to long-term behaviors even in finite time horizons.

Definition 5 (Measure).

A set function µ : Σ → [0,∞] defined on a σ-algebra Σ is a measure if it satisfies the following.

1. Empty set. µ(∅) = 0.
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2. Countable additivity. If A1, A2, . . . ∈ Σ are disjoint, then

µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

The triple (Ω,Σ, µ) is called a measure space.

It is nonobvious how we might extend m on A to an actual measure m̄ on B if the sets in B, also known
as Borel sets, do not admit any explicit description in terms of sets in A. The key is again approximation:
we will approximate the measure of a Borel set arbitrarily closely from above by the measures of countable
covers from the algebra A.

Theorem 1 (Carathédory’s extension theorem).

Let µ be a premeasure on an algebra A. Then there exists a measure µ̄ on Σ, the σ-algebra generated
by A, such that µ̄ ↾ A ≡ µ; that is, µ̄ is an extension of µ. If µ is also σ-finite, then µ̄ is unique.

Proof. We leave the proof to a future note.

To be covered: outer measures, the monotone class lemma, Dynkin’s π-λ theorem, the completion of a
σ-algebra and the Lebesgue σ-algebra, product measures, and the Lebesgue measure in n dimensions.

■
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