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This note pertains in part to the uniqueness result of Carathéodory’s extension theorem.

How can we determine a measure µ on Σ? Obviously, if we provide a whole σ-algebra’s worth of information, i.e.
the value of µ(A) for every A ∈ Σ, then we uniquely specify µ. But, measurable sets in Σ do not admit explicit
constructive descriptions in general, so defining µ(A) for a general A ∈ Σ can be quite difficult. If we can instead
specify µ on a smaller class of sets C ⊆ Σ to somehow uniquely determine all of µ using countable additivity, then
we will have a much easier time constructing measures.

Theorem 1 (σ-finite measures are uniquely determined by their value on a generating π-system).

Let µ1, µ2 be σ-finite measures on a σ-algebra Σ that agree on a π-system generating Σ, i.e. µ1(A) = µ2(A)
for all A ∈ Π. Then µ1 ≡ µ2 on all of Σ.

Definition 1 (π-system).

A family is a π-system if it is closed under finite intersection.

Definition 2 (σ-finite measure).

A measure µ on (Ω,Σ) is σ-finite if there exists a countable partition Ω1,Ω2, . . . of Ω such that µ(Ωi) < ∞
for all i ≥ 1.

Theorem 1 has some interesting consequences. In probability, independence is determined by generating π-systems
as well, furthering the connections between intersections, products, and orthogonality. And, because semialgebras
are π-systems, σ-finite measures defined on a semialgebra are uniquely determined! Thus, the Lebesgue measure
on Rn, as we constructed it, is truly unique.

We remark that it suffices to prove Theorem 1 for the case of finite measures, for which µ(Ω) < ∞. If the result
holds in the finite case, then for σ-finite µ and A ∈ Σ,

µ1(A) =

∞∑
i=1

µ1(A ∩ Ωi) =

∞∑
i=1

µ2(A ∩ Ωi) = µ2(A)

using the fact that (Ωi)
∞
i=1 partition Ω, the countable additivity of µ1, µ2, and the finiteness of µ1, µ2 restricted

to each Ωi. Alternative, we can consider
⋃n

i=1 Ωi ↑ Ω, where each
⋃n

i=1 Ωi has finite measure.
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Proposition 1 (Properties of a measure).

Let µ be any measure on Σ. Then the following hold.

a. Monotonicity. If A ⊆ B, then µ(A) ≤ µ(B).

b. Set difference. If µ(A) < ∞ and A ⊆ B, then µ(B \A) = µ(B)− µ(A).

c. Continuity from below. If A1 ⊆ A2 ⊆ · · · is an increasing sequence of sets with limit
⋃∞

i=1 Ai, then

µ(Ai) ↑ µ

( ∞⋃
i=1

Ai

)
.

d. Continuity from above. If A1 ⊇ A2 ⊇ · · · is a decreasing sequence tending to
⋂∞

i=1 Ai, and µ(Ai) < ∞
for some i ≥ 1 (without loss of generality i = 1), then

µ(Ai) ↓ µ

( ∞⋂
i=1

Ai

)
.

We will not prove the properties above, but we will note the finiteness assumptions (which allows the subtraction
of measures without the issue of ∞−∞), and the fact that µ(B\A), µ(

⋃∞
i=1 Ai), and µ(

⋂∞
i=1 Ai) are completely

determined by the values of µ(A), µ(B), and µ(Ai) given. In contrast, µ(A ∪B), which equals µ(A) + µ(B)−
µ(A∩B) by the principle of inclusion-exclusion, is not determined by merely µ(A) and µ(B). Thus, if we specify
µ(A) for all A ∈ C, then we also specify the measures of set differences B \A and monotone limits, but not finite
intersections. This motivations the following definition and result.

Definition 3 (λ-system).

A family Λ is a λ-system if it satisfies the following.

1. Nonempty. Ω ∈ Λ.

2. Closure under set difference. If A,B ∈ Λ and A ⊆ B, then B \A ∈ Λ.

3. Closure under increasing limits. If A1, A2, . . . ∈ Λ and A1 ⊆ A2 ⊆ · · · , then
⋃∞

i=1 Ai ∈ Λ.

Proposition 2 (Two measures agree on a λ-system).

Let µ1, µ2 be (σ-)finite on Σ. Then {A ∈ Σ : µ1(A) = µ2(A)} is a λ-system.

In some sense, being a π-system and being a λ-system are “complementary” properties; if two measures also agree
for all finite intersections, then, as noted above, they should also agree everywhere, i.e. on the full σ-algebra. The
following result justifies this observation when applied to C = {A ∈ Σ : µ1(A) = µ2(A)}, proving Theorem 1.

Proposition 3 (π-λ).

A family is a σ-algebra iff it is both a π-system and λ-system.
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