Determining a measure

Alex Fu

2023-01-07

This note pertains in part to the uniqueness result of Carathéodory's extension theorem.

How can we determine a measure μ on Σ ? Obviously, if we provide a whole σ -algebra's worth of information, i.e. the value of $\mu(A)$ for every $A \in \Sigma$, then we uniquely specify μ . But, measurable sets in Σ do not admit explicit constructive descriptions in general, so defining $\mu(A)$ for a general $A \in \Sigma$ can be quite difficult. If we can instead specify μ on a smaller class of sets $C \subseteq \Sigma$ to somehow uniquely determine all of μ using countable additivity, then we will have a much easier time constructing measures.

Theorem 1 (σ -finite measures are uniquely determined by their value on a generating π -system).

Let μ_1, μ_2 be σ -finite measures on a σ -algebra Σ that agree on a π -system generating Σ , i.e. $\mu_1(A) = \mu_2(A)$ for all $A \in \Pi$. Then $\mu_1 \equiv \mu_2$ on all of Σ .

Definition 1 (π -system).

A family is a π -system if it is closed under finite intersection.

Definition 2 (σ -finite measure).

A measure μ on (Ω, Σ) is σ -finite if there exists a countable partition $\Omega_1, \Omega_2, \ldots$ of Ω such that $\mu(\Omega_i) < \infty$ for all $i \ge 1$.

Theorem 1 has some interesting consequences. In probability, *independence* is determined by generating π -systems as well, furthering the connections between intersections, products, and orthogonality. And, because *semialgebras* are π -systems, σ -finite measures defined on a semialgebra are uniquely determined! Thus, the Lebesgue measure on \mathbb{R}^n , as we constructed it, is truly unique.

We remark that it suffices to prove Theorem 1 for the case of finite measures, for which $\mu(\Omega) < \infty$. If the result holds in the finite case, then for σ -finite μ and $A \in \Sigma$,

$$\mu_1(A) = \sum_{i=1}^{\infty} \mu_1(A \cap \Omega_i) = \sum_{i=1}^{\infty} \mu_2(A \cap \Omega_i) = \mu_2(A)$$

using the fact that $(\Omega_i)_{i=1}^{\infty}$ partition Ω , the countable additivity of μ_1, μ_2 , and the finiteness of μ_1, μ_2 restricted to each Ω_i . Alternative, we can consider $\bigcup_{i=1}^n \Omega_i \uparrow \Omega$, where each $\bigcup_{i=1}^n \Omega_i$ has finite measure.

Proposition 1 (Properties of a measure).

Let μ be any measure on Σ . Then the following hold.

- a. Monotonicity. If $A \subseteq B$, then $\mu(A) \leq \mu(B)$.
- b. Set difference. If $\mu(A) < \infty$ and $A \subseteq B$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- c. Continuity from below. If $A_1 \subseteq A_2 \subseteq \cdots$ is an increasing sequence of sets with limit $\bigcup_{i=1}^{\infty} A_i$, then

$$\mu(A_i) \uparrow \mu\left(\bigcup_{i=1}^{\infty} A_i\right).$$

d. Continuity from above. If $A_1 \supseteq A_2 \supseteq \cdots$ is a decreasing sequence tending to $\bigcap_{i=1}^{\infty} A_i$, and $\mu(A_i) < \infty$ for some $i \ge 1$ (without loss of generality i = 1), then

$$\mu(A_i) \downarrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

We will not prove the properties above, but we will note the finiteness assumptions (which allows the subtraction of measures without the issue of $\infty - \infty$), and the fact that $\mu(B \setminus A)$, $\mu(\bigcup_{i=1}^{\infty} A_i)$, and $\mu(\bigcap_{i=1}^{\infty} A_i)$ are completely determined by the values of $\mu(A)$, $\mu(B)$, and $\mu(A_i)$ given. In contrast, $\mu(A \cup B)$, which equals $\mu(A) + \mu(B) - \mu(A \cap B)$ by the principle of inclusion-exclusion, is not determined by merely $\mu(A)$ and $\mu(B)$. Thus, if we specify $\mu(A)$ for all $A \in C$, then we also specify the measures of set differences $B \setminus A$ and monotone limits, but not finite intersections. This motivations the following definition and result.

Definition 3 (λ -system).

A family Λ is a λ -system if it satisfies the following.

- 1. Nonempty. $\Omega \in \Lambda$.
- 2. Closure under set difference. If $A, B \in \Lambda$ and $A \subseteq B$, then $B \setminus A \in \Lambda$.
- 3. Closure under increasing limits. If $A_1, A_2, \ldots \in \Lambda$ and $A_1 \subseteq A_2 \subseteq \cdots$, then $\bigcup_{i=1}^{\infty} A_i \in \Lambda$.

Proposition 2 (Two measures agree on a λ -system).

Let μ_1, μ_2 be $(\sigma$ -)finite on Σ . Then $\{A \in \Sigma : \mu_1(A) = \mu_2(A)\}$ is a λ -system.

In some sense, being a π -system and being a λ -system are "complementary" properties; if two measures also agree for all finite intersections, then, as noted above, they should also agree *everywhere*, i.e. on the full σ -algebra. The following result justifies this observation when applied to $C = \{A \in \Sigma : \mu_1(A) = \mu_2(A)\}$, proving Theorem 1.

Proposition 3 $(\pi$ - λ).

A family is a σ -algebra iff it is both a π -system and λ -system.

2