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There are elements of creativity, intuition, and technique to proofs, but quite often, especially in “routine” proofs
and arguments, there is also an element of simple pattern matching or recognition. Despite the title of this note,
our discussion will focus on some common patterns appearing in these more “mundane” checks and verifications,
rather than the more variable approaches to proofs of deeper results. These patterns are not entirely uninteresting,
however: they can still make appearances as intermediate steps in more complex proofs. Their value lies in being
an important part of fluency, just like mechanical skills such as breathing or reading, which once learned, you can
wield naturally as part of your skillset without needing to consciously apply.

We have already seen some patterns in the proof of the Strong Law of Large Numbers, paradigms like managing
complexity, reduction to simpler cases, and transforming qualitative statements into finer quantitative statements.
Here, we will aim to discuss a few more. An overarching pattern that we want to highlight first is to

Follow the definition; work from the definition.

If you have previously done exercises in axiomatic systems, e.g. set theory, abstract algebra, or point-set topology,
then this should be a familiar story. Less creativity is required than systematically applying the 2–4 properties you
are given as part of the definition. In probability in particular, many constructions like the Lebesgue σ-algebra or
the class of all integrable functions are too complicated to be described explicitly. Instead, they are defined via a
multistage development process, or story, of increasing complexity. Each intermediate step will be straightforward,
e.g. taking finite unions or taking monotone limits; the complexity arises from having multiple steps.

Very often, proofs of properties of such objects involve tracing the same story as the definition, one of the most
prominent examples being Lebesgue integration, which we will soon expand upon.

Use the few properties that you are given.

1. Showing two σ-algebras are equal.

This seems fairly standard: Σ1 = Σ2 iff Σ1 ⊆ Σ2 and Σ2 ⊆ Σ1. But, as remarked, σ-algebras are difficult
to specify explicitly. How can you show A ∈ Σ2 for all A ∈ Σ1 if you don’t know what “all A ∈ Σ1” means?
In practice, most σ-algebras of interest will have a generating set C, a “smaller” collection of sets that can
be described, such as the collection of open intervals.

Here is the key: the σ-algebra σ(C) generated by C is the minimal σ-algebra containing C.
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Let C1, C2 be generating sets of Σ1,Σ2 respectively. We can now prove Σ1 = Σ2 by showing that C1 = C2,
i.e. C1 ⊆ C2 and C2 ⊆ C1, but there is an even less intensive method: showing that C1 ⊆ Σ2 and C2 ⊆ Σ1.
Why? Minimality. Σ2 is a σ-algebra containing C1, but Σ1 = σ(C1) is the minimal σ-algebra containing
C1, so Σ1 ⊆ Σ2. Symmetrically, C2 ⊆ Σ1 implies Σ2 ⊆ Σ1.

The same applies to more general structures such as λ-systems or topologies, not just σ-algebras.

Σ1 = Σ2 iff C1 ⊆ Σ2 and C2 ⊆ Σ1.

As a side note, interesting set-theoretic issues arise for σ-algebras. For one, not even the set of all countable
unions of countable intersections of countable unions of . . . sets in C encompasses all of σ(C). To generate
a σ-algebra “bottom-up,” i.e. iterating set operations, requires transfinite induction. This is why we define
σ(C) “top-down,” as the intersection of all σ-algebras containing C, or the minimal σ-algebra containing C.
There also exists a “cardinality gap” not present for algebras: σ-algebras are either finite or uncountable.

2. Showing that every measurable set / every set in a σ-algebra has some property P .

Minimality is again key. Suppose Σ is generated by C, and the property P holds for every A ∈ C. Then it
suffices to show that P = {A ∈ Σ : A has property P} is closed under complements and countable unions!
In this case, P is a σ-algebra, and P contains C, which means that P ⊇ Σ, by which we are done.

Every measurable set has property P if P holds on a generating set of Σ, such as the collection of open
intervals; P (A) =⇒ P (Ac); and P (A1), P (A2), . . . =⇒ P (

⋃∞
i=1 Ai).

Naturally, we can generalize this pattern to show that every element in some structure has a given property.
In many ways, structures are determined by their generating sets and properties closed under their operations.

3. Showing that a given set A is measurable.

This is surprisingly nontrivial for general A. Of course, we are done if we can reduce A to a countable union
of known measurable sets, such as generating sets of Σ, but not all A ⊆ Ω are so nice. One approach is to
leverage countability. Consider the set of points on which a sequence of measurable functions converges.
This requires a statement of the form “for all ε > 0, . . . ,” which translates to an uncountable intersection over
R+, but we can make it countable by taking just ε = 1

k for k ∈ Z+, e.g.
⋂

k∈Z+

{
x : |fn(x)− f(x)| < 1

k

}
.

Or, the denseness of the rationals in the reals is commonly used to translate into countability. For example,
for r ∈ R, {x : f(x) + g(x) > r} is a countable union over q ∈ Q of {x : f(x) > q} ∩ {x : g(x) > r − q}!
Other techniques like diagonalization may be useful for introducing countability as well.

Alternatively, like proving identities for probability using properties of expectation, we can introduce a more
complicated object — measurable functions. If A is the preimage of a known measurable set under some f
which we show is measurable, then A itself is measurable! Which brings us to the following:

4. Showing that a given function f is measurable.

It suffices to check measurability on a generating set, i.e. f−1(B) ∈ Σ for all B ∈ C′.
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The preimage works very nicely with the boolean set operations of union, intersection, and complement; in
fact, the preimage f−1 commutes with the set operations. For continuous functions, which are very similar
to measurable functions in definition, it suffices to check that preimages of open sets in a generating base
or subbase are open. The same reasoning applies here: {B ∈ Σ′ : f−1(B) ∈ Σ} is closed under (arbitrary)
union and complements as noted, which makes it a σ-algebra. If it contains C′ generating Σ′, then it really
equals Σ′, which is precisely the definition of f being measurable.

5. Showing that given σ-algebras {Σi}i∈I are independent.

It suffices to check the definition of independence for generating π-systems {Πi}i∈I . The proof of this fact
first reduces to the case where I is finite without loss of generality, then leverages the principle of successive
approximations or successive upgrades, which also finds itself in proofs like those of Dynkin’s π-λ theorem
or the Lindeberg–Feller Central Limit Theorem.

Informally, to prove a statement about (Σ1, . . . ,Σn) given something about (Π1, . . . ,Πn), our first step is
to upgrade the known result to (Σ1,Π2, . . . ,Πn), then work step-by-step to (Σ1, . . . ,Σn), by induction for
example. We thus break a tough implication into smaller, more manageable “rungs” on a ladder, and climb
up one step at a time.

6. Showing that something is true for all integrable functions.

Use the “approximation” or “monotone class argument,” the same steps through which the Lebesgue integral
and the class of integrable functions were initially defined. For instance, show that property P holds for all
indicator functions, is closed under taking linear combinations, pointwise limits, and differences of unsigned
parts in order to show that {f integrable : f has property P} contains all integrable functions.

You usually don’t have to start all the way down at the level of indicators; the starting point could be simple
functions, bounded measurable functions, or even nonnegative measurable functions. These “generate” the
class of all integrable functions just as well as indicators.

Lastly, a few miscellanous patterns that boil down to the following principle.

Reduce your problems to match the form of known results. Invoke what you know.

7. Showing weak convergence, especially to a Gaussian. Manipulate your problem into a statement about
triangular arrays satisfying the Lindeberg conditions, or reuse the method of characteristic functions in the
general CLT by relating via approximation or otherwise, e.g. by the Lindeberg exchange method.

8. Given convergence in distribution. Invoke Skorohod’s representation theorem. Upgrading weak distribu-
tional convergence to strong or almost sure convergence is a powerful move because it gives you access to
many of the convergence theorems that you might want, like a higher vantage point. And, the extra height
will not hurt, because you always “jump down” at the end using a.s. =⇒ i.d., or taking the distributions.

9. Showing something (elementary) about martingales. Formulate the statement in terms of the optional
stopping theorem (OST) or any of its variations often does the trick. Or, construct a new random process
and show that it is a martingale, then apply known properties.
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