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Theorem 1 (Tychonoff’s theorem).

Let {(Xi, τi)}i∈I be any collection of compact topological spaces. Then
∏

i∈I Xi is compact with respect to
the product topology.

Tychonoff’s theorem is one of the classical results of general topology, often considered to be the most important,
and its proof is typically the most difficult proof covered in an introductory topology course. In this note, we will
present a proof that Tychonoff’s theorem is equivalent to the Axiom of Choice (AC, or AoC).

Definition 1 (Compactness).

A topological space (X, τ) is compact if every open cover of X has a finite subcover. (An open cover of X
is a collection of open sets C ⊆ τ such that X =

⋃
O∈C O; a subcover of C is any cover C′ ⊆ C.)

Definition 2 (Finite intersection property).

A family F of subsets of X has the finite intersection property iff for every finite subcollection F ′ ⊆ F of
nonempty subsets,

⋂
E∈F ′ E ̸= ∅.

Proposition 1 (Equivalent formulation of compactness).

(X, τ) is compact iff for any collection of closed subsets C with the finite intersection property,
⋂

C∈C C ̸= ∅.

Proof. First, observe that by De Morgan’s laws, O ⊆ τ is an open cover of X iff⋂
O∈O

(X \O) = X \
⋃

O∈O
O = ∅.

The contrapositive states that if
⋂

C∈C C = ∅, then there exists a finite subcollection C′ ⊆ C with
⋂

C∈C′ C = ∅.
If X is compact, then any such C has O = {Cc : C ∈ C} an open cover of X, and a finite subcover O′ ⊆ O has
C′ = {Oc : O ∈ O′} with

⋂
C∈C′ C = ∅. Conversely, for an open cover O of X, then C = {Oc : O ∈ O} satisfies⋂

C∈C C = ∅ and has a finite subcollection C′ ⊆ C such that {Cc : C ∈ C′} ⊆ O is a finite subcover of X, which
shows that X is compact.
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Definition 3 (Axiom of Choice).

Let {Xi}i∈I be any collection of nonempty sets. Then the Cartesian product
∏

i∈I Xi is nonempty.

Lemma 1 (Zorn’s lemma).

Let A be any nonempty collection of sets. If every chain C ⊆ A has an upper bound Y ∈ A, such that X ⊆ Y
for all X ∈ C, then A has a ⊆-maximal element. (A chain is a subset totally ordered by ⊆.)

Proposition 2.

Zorn’s lemma is equivalent to the Axiom of Choice.

We will leave a proof of Proposition 2, and the many equivalencies and consequences of the Axiom of Choice, to
a course on set theory. Instead, we present one last lemma we will need in the proof of Theorem 1:

Lemma 2 (Equivalent condition for being in the closure).

Let (X, τ) be a topological space, x ∈ X, and A ⊆ X. Then x ∈ A iff every open (basic) set O containing
x intersects A, i.e. O ∩A ̸= ∅. (Note that every open set contains some basis set, and B ∩A ⊆ O ∩A.)

Proof. If there is an open O ∋ x with O ∩A ̸= ∅, then A ⊆ Oc closed, and A ⊆ Oc. But x /∈ Oc means x /∈ A.
Conversely, x /∈ A means (A)c is an open set containing x disjoint from A: (A)c ∩A ⊆ (A)c ∩A = ∅.

The proof of Theorem 1 proceeds on the following page.
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Proof of Tychonoff’s theorem. Let C be a collection with the finite intersection property of closed subsets of X.
By Proposition 1, it suffices to show that

⋂
C∈C C is nonempty.

1. Let Ω be the collection of families of subsets of X that contain C and have the finite intersection property.
We claim that Ω satisfies the hypothesis of Zorn’s lemma.

Let C ⊆ Ω be a chain, and let U =
⋃

F∈C F . We wish to show that U ∈ Ω.

a. Since any F ∈ Ω has F ⊇ C, we have U ⊇ C as well.

b. To check that U has the finite intersection property, let {Ek}nk=1 ⊆ U be a finite subcollection. There
exists Fk ∈ C ⊆ Ω containing Ek for each k = 1, . . . , n by definition of U . As C is linearly ordered,
let F be the maximum of the Fk, so that {Ek}nk=1 ⊆ F ∈ C . But F ∈ Ω as well, so F has the finite
intersection property, and

⋂n
k=1 Ek ̸= ∅.

Thus every chain C ⊆ Ω has an upper bound U which belongs to Ω.

2. Using Zorn’s lemma, there is a maximal family M that contains C and has the finite intersection property.
We claim that M is closed under finite intersections.

Let I be the set of finite intersections of M. It is clear that I ⊇ M; by maximality, it suffices to show that
I ∈ Ω in order to show that I ⊆ M, i.e. I = M.

a. I contains C as I ⊇ M ⊇ C.

b. To check that I has the finite intersection property, let {Ek}nk=1 ⊆ I be a finite subcollection. There
exist Fk,ℓ ∈ M such that Ek =

⋂mk

ℓ=1 Fk,ℓ for each k = 1, . . . , n by definition of I. Because each Ek

is nonempty, the Fk,ℓ ∈ M are nonempty as well. By the finite intersection property of M,

n⋂
k=1

Ek =

n⋂
k=1

mk⋂
ℓ=1

Fk,ℓ ̸= ∅.

3. We claim that if a subset F ⊆ X satisfies E ∩ F ̸= ∅ for every E ∈ M, then F ∈ M as well.

Let M′ = M∪{F}. As above, noting that M′ ⊇ M ⊇ C, it suffices to show that M′ ∈ Ω by maximality
of M. In particular, it suffices to prove M′ ⊇ {Ek}nk=1 has the finite intersection property, where we may
assume Ek = F for some k, without loss of generality k = 1. But then E =

⋂n
k=2 Ek ∈ M by its closure

under finite intersections, and E is nonempty. By hypothesis on F , we have that
n⋂

k=1

Ek = F ∩
n⋂

k=2

Ek = F ∩ E ̸= ∅.

4. For i ∈ I and F ∈ Ω, we claim that πi(F) := {πi(E) : E ∈ F} has the finite intersection property.

Let {Fk}nk=1 ⊆ πi(F). There exist {Ek}nk=1 ⊆ F such that Fk = πi(Ek) for each k, and
⋂n

k=1 Ek ̸= ∅
by the finite intersection property of F . Taking e ∈

⋂n
k=1 Ek, we see that πi(e) ∈ πi(Ek) for every k, so

πi(e) ∈
n⋂

k=1

πi(Ek) ̸= ∅.

5. For i ∈ I and Mi := {πi(E) : E ∈ M}, we claim that
⋂

E∈Mi
E is nonempty.
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Let {πi(Ek)}nk=1 be a finite subcollection of nonempty subsets. Per the previous step 4,

n⋂
k=1

πi(Ek) ⊇
n⋂

k=1

πi(Ek) ̸= ∅,

which shows that Mi has the finite intersection property. By the compactness of Xi and Proposition 1, we
see that the claim is true.

6. Using the Axiom of Choice, there exists xi ∈
⋂

E∈Mi
E for each i ∈ I. Let x = (xi)i∈I be the point in X.

We claim that x ∈ E for every nonempty E ∈ M.

Per Lemma 2, to show that x ∈ E, it suffices to show that every basis set B containing x has E ∩B ̸= ∅.
For i ∈ I and Oi ⊆ Xi open, we claim that the subbasic set π−1

i (Oi) ∋ x intersects E. We have xi ∈ Oi,
and xi ∈ πi(E) by E ∈ M. Then Oi ∩πi(E) ̸= ∅, and nonempty image means nonempty preimage. Now,
step 3 shows that every subbasic set containing x belongs to M; step 2 shows that basis sets containing x,
finite intersections of subbasic sets, belong to M too. Then B ∩E ̸= ∅ by the finite intersection property
of M for x ∈ B ∈ M.

As every C ∈ C is closed and belongs to M, we have shown that C has the finite intersection property:

x ∈
⋂
C∈C

C =
⋂
C∈C

C ̸= ∅.

Thus we are done. By Proposition 1, X is compact with respect to the product topology.

The proof of the converse AC =⇒ Tychonoff’s, which is much shorter than the proof above, is on the next page.
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Theorem 2 (Kelley’s theorem).

Tychonoff’s theorem implies the Axiom of Choice.

Proof of Kelley’s theorem. Suppose that Tychonoff’s theorem is true. Let {Xi}i∈I be any collection of nonempty
sets; we wish to show that X :=

∏
i∈I Xi is nonempty.

1. First, we enlarge the Xi to equip them with suitable topologies. Let ω be a set that does not belong to any
of the Xi, for instance ω :=

⋃
i∈I Xi, which does not belong to

⋃
i∈I Xi by the Axiom of Regularity. Then

define Yi := Xi ∪ {ω}, to which we give the topology τi := {∅, Xi, {ω} , Yi}.

It is straightforward to check that {∅, A,Ac, S} is a topology on S ⊇ A in general. Moreover, each (Yi, τi)
is compact by the finiteness of the τi. Invoking Tychonoff’s theorem, Y :=

∏
i∈I Yi is compact.

2. Now, we will extract an element of X using the compactness of Y through Proposition 1. Let πi : Y ↠ Yi

be the canonical projection, which is continuous as Y is given the product topology. As Xi is closed in Yi,
we have that Ci := π−1

i (Xi) is closed in Y .

We claim that the collection of closed sets {Ci}i∈I has the finite intersection property. Given finite subcol-
lection {Cik}nk=1, we can choose finitely many points xik ∈ Xik and set

yi :=

xik if i ∈ {i1, . . . , in}

ω otherwise.

Then the point y = (yi)i∈I belongs to Y , and y ∈ π−1
ik

(Xik) = Cik for each k = 1, . . . , n per definition, so
y ∈

⋂n
k=1 Cik . Note that we can always choose an element out of each of finitely many nonempty sets; yi

is set to be ω in all other coordinates to avoid a circular argument needing AC.

3. Invoking Proposition 1, there exists some x ∈
⋂

i∈I Ci. But x ∈ Ci means that πi(x) ∈ Xi for each i ∈ I,
i.e. x ∈

∏
i∈I Xi. Thus we are done.

■
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