
The portmanteau lemma

Alex Fu

2023-01-12

Lemma 1 (Portmanteau lemma).

Let (S, d) be a metric space, Σ the Borel σ-algebra induced by d, and µ1, µ2, . . ., µ probability measures on
(S,Σ). Then the following are equivalent.

a. µn converges weakly to µ.

b. For all bounded continuous functions g : S → R,
∫
g dµn →

∫
g dµ.

c. For all bounded Lipschitz functions g : S → R,
∫
g dµn →

∫
g dµ.

d. For all open sets O, lim infn→∞ µn(O) ≥ µ(O).

e. For all closed sets C, lim supn→∞ µn(C) ≤ µ(C).

f. For all continuity sets A, limn→∞ µn(A) = µ(A). (The boundary of a set ∂A := A−A◦ is its closure
minus its interior. A is a continuity set if its boundary is a µ-null set: µ(∂A) = 0.)

g. For all bounded measurable functions f , if the set of discontinuity points Df has zero µ-measure, i.e.
µ(Df) = 0, then

∫
f dµn →

∫
f dµ.

The portmanteau lemma is a useful bag of assorted conditions equivalent to weak convergence, or convergence
in distribution, one of the modes of convergence central to probability theory.

Definition 1 (Convergence in distribution).

Let X1, X2, . . ., X be random variables with cumulative distribution functions Fn, F and distributions µn, µ
respectively. Then Xn converges in distribution to X, denoted Xn

d→ X, Fn
d→ F , or µn

d→ µ, if Fn(x) →
F (x) pointwise at all continuity points x of F ,

Definition 1 works for R- or Rd-valued random variables, so it is sufficient for a great deal of purposes. However,
other spaces do not necessarily have a notion of cumulative distribution functions, but we may still want to study
distributional convergence on those spaces. After all, Rd is only one class of particularly nice complete separable
metric spaces. Also, almost sure convergence can be defined in general, and convergence in probability for general
metric spaces, so it would be strange if the convergence of distributions, which exist in general probability spaces,
could only be defined for real-valued random variables. As such, we have the following generalization.
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Definition 2 (Weak convergence).

Let (S, d) be a metric space, and let Xn, X be S-valued random variables with distributions µn, µ respectively.
Xn converges weakly to X, denoted Xn

w→ X or µn
w→ µ, if for all bounded continuous functions g : S → R,

E(g(Xn)) → E(g(X)).

This may seem like a strange definition at first, but it turns out to be the right definition.

Proposition 1 (Distributional and weak convergence).

Convergence in distribution and weak convergence coincide for Rd-valued random variables.

Proof. We will only prove the case of d = 1. Let µn, µ be probability measures (distributions) on R. The forward
direction is easy given Skorohod’s representation theorem: there exist some Xn ∼ µn, X ∼ µ such that Xn → X
almost surely, and g(Xn) → g(X) on the same almost sure set by the continuity of g. By bounded convergence,
E(g(Xn)) → E(g(X)). The same holds for any Xn

d
= Yn ∼ µn and Y ∼ µ.

For the converse direction, we want to show that Fn(x) = E(1Xn≤x) → E(1X≤x) = F (x), where the indicators
are bounded but not continuous, so we need to approximate the step function g(z) = 1z≤x via continuous ones.
Let gε be g, only linear from (x, 1) to (x + ε, 0), so that gε is continuous (piecewise-linear), and E(gε(Xn)) →
E(gε(X)) by hypothesis. As g ≤ gε, we have that

lim sup
n→∞

E(g(Xn)) ≤ E(gε(X)).

To be continued.
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