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This note is my own summary of Chapters 1–2.5 of Complex Variables and Their Applications by Brown
and Churchill, 7th edition.

The complex numbers (C,+,×, |·|) form a complete field. C ≃ R2 as additive groups, where each z ∈ C
admits a unique representation z = x+ yi for x, y ∈ R, which is more convenient for additive properties.
In this Cartesian or rectangular form, x is the real part of z, and y is the imaginary part of z.

z1
z2

=
1

x22 + y22
((x1x2 + y1y2) + i(y1x2 − x1y2)).

In the nonunique polar form z = r(cos θ + i sin θ) := reiθ, z ̸= 0, the modulus or absolute value of z is
r := |z| =

√
x2 + y2, and the argument of z is any θ which solves tan θ = y/x. The principal argument

Arg(z) is the unique solution in (−π, π], and arg(z) is the set of 2πn-translates θ of Arg(z). Polar form
is more convenient for multiplication as arg(·) acts “logarithmically”:

arg(z1z2) = arg(z1) + arg(z2),

interpreted as A+B = {a+ b : a ∈ A, b ∈ B}. De Moivre’s formula follows from the exponential form:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

C is a *-algebra under the conjugation z = x+ yi 7→ z := x− yi, where zz = |z|2. The nth root of any
z = reiθ is any root of unity ζk = ei2πk/n, scaled by the unique positive root n

√
r and rotated by eiθ/n.

The principal nth root of z is n
√
reiArg z.

A neighborhood of z0 is an open ball about z0 of radius ε > 0, and a deleted neighborhood is one missing
its center. Interior points lie in the interior, exterior points lie outside of the closure, and boundary points
lie on the boundary. Or, an exterior point lies in a neighborhood disjoint from the set. Open sets contain
none of their boundary points, and closed sets all. The punctured disk is the closed unit ball without the
origin. A domain is a connected open set, like a neighborhood; a region is a domain with any number of
its boundary points. Every deleted neighborhood of an accumulation point intersects the set.

This finishes a speedrun of Chapter 1.
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We take the maximal domain of definition. Multiple-valued or multivalued functions are often of interest
in complex analysis, unlike in real analysis. “Inasmuch” is in fact a word (!). To study mappings, we can
examine the images of quadrants, curves, lines, rays, and regions under the transformation.

Definition 1 (Limit).

For f defined in some deleted neighborhood of z0, the limit of f(z) as z approaches z0, if it exists, is
the point w0 where every ε-neighborhood of w0 contains the image of some deleted δ-neighborhood
of z0. The limit is unique by the triangle inequality for |·|.

We can extend Definition 1 to z0 in the boundary of the region dom f by restricting z to the intersection
of the deleted δ-neighborhood and the region. For example, if f(z) = wz, w ∈ C is defined on the open
unit ball, then limz→i f(z) = wi: for any ε > 0, there exists δ = ε/ |w| such that

0 < |z − i| < δ =⇒ |w| · |z − i| = |f(z)− wi| < ε.

Importantly, z → z0 approaches in an arbitrary manner, not from some particular direction or along some
curve. For example, limz→0 z/z does not exist: it equals 1 when approached along the real axis and −1
along the imaginary axis, which contradicts the uniqueness of a limit.

Some regular checks show that a complex function converges at a point iff both of its real and imaginary
parts converge, and complex limits still preserve addition and multiplication (and thus polynomials). To
define limits at infinity, let us first define C ∪ {∞}:

Definition 2 (Extended complex plane).

The extended complex plane or one-point compactification Ĉ = C ∪ {∞}, where ∞ is the point at
infinity, is the stereographic projection of the Riemann sphere.

Consider a three-dimensional sphere centered at the origin of the ordinary complex plane. Every point
z ∈ C can be uniquely identified with a point P on the surface of the sphere, so that z, P , and the
north pole lie on the same line. Then the south pole of the sphere corresponds to 0, while the north
pole is said to correspond to ∞.

The equator of the unit sphere is precisely the unit circle; the northern hemisphere is the exterior of the
unit circle, and the southern hemisphere its interior. An ε-neighborhood of ∞ is therefore defined to
be {z : |z| > 1/ε}. The expected limit results follow:

Proposition 1 (Infinite limits and limits at infinity).

Let z0, w0 ∈ C. Then

a. limz→z0 f(z) = ∞ iff limz→z0 1/f(z) = 0.

b. limz→∞ f(z) = w0 iff limz→0 1/f(z) = w0.
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Consequently, limz→∞ f(z) = ∞ iff limz→0 1/f(1/z) = 0. In some sense, ∞ and 0 really are dual like
the north pole and south pole of a sphere, furthest away from each other in modulus or in reciprocal.

The usual definition of pointwise continuity follows, and sums, products, and compositions of continuous
functions are continuous per the usual proofs. In particular, polynomials are continuous. If f continuous
is nonzero at a point z0, then it is nonzero in a neighborhood of z0: take ε = |f(z0)| /2. And, a complex
function is continuous iff its real and imaginary components are. It follows that continuous functions on
closed bounded regions are bounded and attain an extrema: the R-valued |f |(z) = |f(z)| is continuous.

Definition 3 (Derivative).

If dom f contains some neighborhood of z0, then the derivative of f at z0, if the limit exists, is

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim

h→0

f(z0 + h)− f(z0)

h
.

Differentiability implies continuity, but not the converse. For instance, f(z) = |z|2 is continuous every-
where, but differentiable only at 0. We abbreviate z = z0 and write ∆z = h, ∆f := f(z +∆z)− f(z).

∆f

∆z
=

(z +∆z)(z +∆z)− zz

∆z
= z +∆z + z

∆z

∆z
.

If ∆z approaches 0 along the x-axis, ∆f/∆z approaches z + z; along the y-axis, ∆f/∆z approaches
z − z. Thus if f ′(z) = lim∆z→0∆f/∆z, then z + z must equal z − z, or z = 0.

The usual derivative rules — linearity, power rule, product rule, quotient rule, and chain rule — still hold
for the complex derivative.

Proposition 2 (Cauchy–Riemann equations).

Suppose that f(z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0. Then

ux = vy, uy = −vx

at (x0, y0), where the existence of the first-order partial derivatives of u and v is implicit. Moreover,

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

The contrapositive of Proposition 2 is often useful to find where f is not differentiable.

Proof. Keeping the notation above, we also write ∆z = ∆x+ i∆y. Note that

∆f = [u(x0 +∆x, y0 +∆y)− u(x0, y0)] + i[v(x0 +∆x, y0 +∆y)− v(x0, y0)].

The derivative of f at z0 exists by hypothesis and equals

f ′(z0) = lim
(∆x,∆y)→(0,0)

Re

(
∆f

∆z

)
+ i lim

(∆x,∆y)→(0,0)
Im

(
∆f

∆z

)
.
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Suppose we let (∆x,∆y) approach (0, 0) along the x-axis, so that ∆y = 0. Then

f ′(z0) = lim
∆x→0

u(x0 +∆x, y0)− u(x0, y0)

∆x
+ i lim

∆x→0

v(x0 +∆x, y0)− v(x0, y0)

∆x

= ux(x0, y0) + ivx(x0, y0).

Likewise, if we let (∆x,∆y) approach (0, 0) along the y-axis, then

f ′(z0) = lim
∆y→0

u(x0, y0 +∆y)− u(x0, y0)

i∆y
+ i lim

∆y→0

v(x0, y0 +∆y)− v(x0, y0)

i∆y

= −iuy(x0, y0) + vy(x0, y0).

These two quantities are equal, and we are done.

The key to the proof above: as limits allow approaching in any arbitrary manner, we chose the simplest
horizontal and vertical directions to approach in, which eliminates any ∆y and ∆x respectively, isolating
the x- and y-components of the function, which is precisely what gives access to the partial derivatives.
In fact, we also have a partial, nearly full converse to Proposition 2.

Proposition 3 (Sufficient conditions for differentiability).

Suppose that f(z) = u(x, y) + iv(x, y) and the first-order partial derivatives of u and v are defined
in some neighborhood of the point z0 = x0+ iy0. If the partial derivatives are continuous at (x0, y0)
and satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx

at (x0, y0), then f is differentiable at z0.

Proof. Keeping the notation above, let 0 < |∆z| < ε and write

∆f = ∆u+ i∆v

:= [u(x0 +∆x, y0 +∆y)− u(x0, y0)] + i[v(x0 +∆x, y0 +∆y)− v(x0, y0)].

By the continuity of the first-order partial derivatives at (x0, y0), we can write

∆u = ux(x0, y0)∆x+ uy(x0, y0)∆y + ε1
√

(∆x)2 + (∆y)2,

and likewise for ∆v, where ε1, ε2 tend to 0 as (∆x,∆y) → (0, 0). Substituting above and applying the
Cauchy–Riemann equations, we have that

∆f = ux(x0, y0)(∆x+ i∆y) + vx(x0, y0)(i∆x−∆y) + (ε1 + iε2)
√

(∆x)2 + (∆y)2.

Dividing by ∆z = ∆x+ i∆y, we find that the limit exists and equals

f ′(z0) = ux(x0, y0) + ivx(x0, y0).
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As a consequence, we see that ez = ex cos y+ iex sin y is really its own derivative, and we have another
explanation for why z 7→ |z|2 is differentiable only at 0.

We will continue with deriving a polar form for the Cauchy–Riemann equations, analytic functions, and
harmonic functions.

■
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