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This note is a selection of proofs and my own solutions to exercises from Real Analysis: Modern Techniques and
Their Applications by Gerald B. Folland, 2nd edition.

Proposition 1 (Existence of nonmeasurable sets).

Let d ≥ 1. There does not exist a function µ : P(Rd) → [0,∞] satisfying all three properties below.

1. Countable additivity. If E1, E2, . . . is a countable collection of (pairwise) disjoint subsets of Rd, then

µ

( ∞⊔
n=1

En

)
=

∞∑
n=1

µ(En).

2. Translation invariance. If E ⊆ Rd and T : Rd → Rd is a linear isometry, i.e. det(T ) = ±1, then

µ(E) = µ(T (E)).

In particular, translations, rotations, reflections, and any compositions thereof are linear isometries.

3. Unit hypercube. If Q is the unit hypercube [0, 1)d or [0, 1]d, then

µ(Q) = 1.

The following proof is a revision of 2023-01-04.

Proof. We will show that there exists a Vitali set E ⊆ [0, 1) such that µ(E) cannot be defined for µ satisfying all
three properties above. It suffices to show the case of d = 1 as we can consider E × [0, 1)d−1 ⊆ [0, 1)× [0, 1)d−1

for d ≥ 1 in general.

Define an equivalence relation ∼ on [0, 1) such that x ∼ y iff x− y ∈ Q. Assuming the Axiom of Choice, we may
choose a representative from each equivalence class; call the set of representatives E. (For example, E could be
{0, e− 2, π − 3, . . .}, although this proof using AC is nonconstructive.) We also write

Eq := (E + q) mod 1 = {(x+ q) mod 1 : x ∈ E} ⊆ [0, 1).

Now, we claim that the collection of all Eq, q ∈ Q ∩ [0, 1) is a countable partition of [0, 1).
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a. Q ∩ [0, 1) is countable, so the collection of Eq is certainly countable.

b. The union of the Eq covers [0, 1), i.e. every x ∈ [0, 1) belongs to at least one Eq: by definition of E, there
exists some y ∼ x such that y ∈ E. Then x = y+ (x− y) ∈ E + (x− y) mod 1, or x ∈ Ex−y, x− y ∈ Q.

c. The Eq are disjoint, i.e. every x ∈ [0, 1) belongs to at most one Eq: let q, r ∈ Q, q ̸= r, and suppose there
is some x ∈ Eq ∩Er. That is, y + q = x = y′ + r mod 1 for some y, y′ ∈ E. With q, r ∈ [0, 1) and q ̸= r,
it is clear that y ̸= y′. But by definition of ∼, we see that y ∼ y′, which contradicts the definition of E.

Thus, if µ satisfies the conditions of Proposition 1, then

1 = µ([0, 1)) =
∑

q∈Q∩[0,1)

µ(Eq) =
∑

q∈Q∩[0,1)

µ(E).

But the countably infinite sum of µ(E) ∈ [0,∞] is either 0 or ∞, so E ⊆ [0, 1) cannot be assigned a value under
µ. Therefore µ cannot be defined on all of P(R1).

In fact, weakening condition 1 to finite additivity still fails to produce a viable µ. A result of Banach–Tarski states
that for any bounded open sets O,O′ ⊆ Rd, d ≥ 3, there exist finite partitions of O and O′ into an equal number
of pieces {Ei}ni=1, {Fi}ni=1 such that each Ei is congruent to Fi, i.e. the image of Fi under some linear isometry
(and vice versa). Thus, a sphere and two spheres could have equal “size” under a finitely additive measure.

Proposition 2 (Disjointization of a union).

Let E1, E2, . . . be a countable collection of sets. Then there exist F1, F2, . . . disjoint, such that

∞⋃
n=1

En =

∞⊔
n=1

Fn.

Proof. Consider Fn := En \
⋃n−1

i=1 Ei, or En ∩
⋂n−1

i=1 Ec
i , from which it is clear that the Fn are disjoint. And, by

induction with base case E1 = F1,

n⋃
i=1

Ei =

n−1⋃
i=1

Ei ⊔

(
En \

n−1⋃
i=1

Ei

)
=

n−1⊔
i=1

Fi ⊔ Fn =

n⊔
i=1

Fi

for every n ≥ 1. Taking the limit as n → ∞, we are done.

If E1, E2, . . . are sets in a σ-algebra in particular, then we find that every countable union in a σ-algebra can be
made into a disjoint one. Considering the “partial unions” E1 ⊆ E1 ∪E2 ⊆ E1 ∪E2 ∪E3 ⊆ · · · , every countable
union can also be made into an ascending limit.

Now, some terminology: a Gδ set is a countable intersection of open sets; a Fσ set a countable union of closed
sets; a Gδσ set a countable union of Gδ sets; a Fσδ set a countable intersection of Fσ sets, and so forth. δ and
σ stand for Durchschnitt and Summe, German for intersection and union respectively.

Proposition 3 (Generating sets of the Borel σ-algebra).

The Borel σ-algebra B on R is generated by any of the following collections.

1. The open intervals C1 = {(a, b) : a < b}.

2



2. The closed intervals C2 = {[a, b] : a < b}.

3. The half-open half-closed intervals C3 = {(a, b] : a < b}.

4. The half-closed half-open intervals C4 = {[a, b) : a < b}.

5. The open rays C5 = {(−∞, x) : x ∈ R} or C6 = {(x,∞) : x ∈ R}.

6. The closed rays C7 = {(−∞, x] : x ∈ R} or C8 = {[x,∞) : x ∈ R}.

Proof. By the minimality of the generated σ-algebra (2023-01-09), it suffices to check Ci ⊆ σ(Cj) to show that
σ(Ci) ⊆ σ(Cj). We will simply exhibit a useful collection of identities in this vein.

• (a, b)c = (−∞, a] ∪ [b,∞) and [a, b]c = (−∞, a) ∪ (b,∞); similar holds for (a, b]c and [a, b)c.

• (a, b) = (−∞, b) \ (−∞, a] = (a,∞) \ (b,∞) and [a, b] = (−∞, b] \ (−∞, a) = [a,∞] \ (b,∞).

• ∅ = (x, x) = (x, x] = [x, x).

• {x} = [x, x] = (−∞, x] \ (−∞, x).

•
⋃∞

n=1(−∞, xn) = (−∞, supn≥1 xn), and likewise for (xn,∞).

•
⋂∞

n=1(−∞, xn) = (−∞, infn≥1 xn) or (−∞, infn≥1 xn], and likewise for (xn,∞).

• [a, b] =
⋂

bn↓b[a, bn) =
⋂

bn↓b[a, bn] =
⋂∞

n=1[a, b+
1
n ) =

⋂∞
n=1(a− 1

n , b].

• (a, b) =
⋃

bn↑b(a, bn] =
⋃

bn↑b(a, bn) =
⋃∞

n=1(a, b− 2−n] =
⋃∞

n=1(a+ 2−n, b).

For an informal summary, the complement of a closed endpoint is an “open endpoint,” and vice versa; to create a
closed endpoint, approach from the outside, or “reduce down to a point” through intersections; to create an open
endpoint, approach from the inside, or “build right up to the edge” through unions.

As noted before, the denseness of the rationals in the reals is also helpful when converting seemingly uncountable
situations to countable ones, e.g. “for all ε > 0” to “as 1

n ↓ 0.” Here, we can also introduce countability:

Proposition 4 (Countable generating set of the Borel σ-algebra).

The Borel σ-algebra on Rd is countably generated.

Proof. We claim that B is generated by the set of open intervals with rational endpoints {(a, b) : a, b ∈ Q, a < b}.
Indeed, every x ∈ R admits a (monotone) sequence of rationals converging to it, without loss of generality qn ↑ x.
Then [x,∞) =

⋂∞
n=1(qn,∞), or use any of the variations from Proposition 3.

By later results on product σ-algebras, we see that the Borel σ-algebra on Rd is generated by so-called measurable
rectangles, or products of one-dimensional Borel sets. Thus the product of generating collections itself generates
the product σ-algebra. As the product of (countably many) countable sets is countable, we are done.

In the interest of time, we collect some miscellaneous results below in no particular order.
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Proposition 5 (Cardinality gap of σ-algebras).

Let F be an infinite σ-algebra. Then F is uncountable.

Proof. By hypothesis, there exist E1, E2, . . . ∈ F . By disjointization (Proposition 2), there is a countable sequence
of disjoint sets F1, F2, . . . ∈ F . Now, 2N is uncountable, so{⋃

i∈I

Fi : I ⊆ N

}
⊆ F ,

which is in bijection with 2N = {I : I ⊆ N} by the disjointness of the Fn, is also uncountable.

Proposition 6 (Monotone class lemma).

An algebra A is a σ-algebra iff it is closed under increasing unions (and decreasing intersections).

Proof. One direction is trivial. For the other direction, if E1, E2, . . . ∈ A, consider
⋃n

i=1 Ei ↑
⋃∞

i=1 Ei ∈ A.

Proposition 7 (σ-algebras are the union of all countably-generated sub-σ-algebras).

If F is a σ-algebra generated by C, then

F =
⋃

{σ(S) : S ⊆ C, S countable} .

Proof. Let U be the union above. It is clear that C ⊆ U ⊆ F , so we check that U is a σ-algebra.

1. If A ∈ U , then it is contained in some σ(S) which also contains Ac. Thus Ac ∈ U .

2. If A1, A2, . . . ∈ U , there exist S1,S2, . . . ⊆ C such that An ∈ σ(Sn). Then
⋃∞

n=1 An ∈ σ(
⋃∞

n=1 Sn) ⊆ U .

Proposition 8 (Rings and σ-rings).

A ring is a family closed under finite unions and set differences, and a σ-ring is closed under countable unions.

a. (σ-)rings are closed under (countably in)finite intersections.

b. A (σ-)ring R is a (σ-)algebra iff X ∈ R.

c. If R is a (σ-)ring, then C = {E ⊆ X : E ∈ R or Ec ∈ R} is a (σ-)algebra.

d. If R is a (σ-)ring, then I = {E ⊆ X : E ∩ F ∈ R for all F ∈ R} is a (σ-)algebra.

Proof. I’m sure there are some interesting connections beyond name between a ring of sets, Boolean algebra, set
operations, and an algebraic ring. Here is some more filler text to make this page break cleaner.
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a. If E1, . . . , En ∈ R, let F =
⋃n

i=1 Ei ∈ R. Then
⋂n

i=1 Ei = F \
⋃n

i=1(F \ Ei) by De Morgan’s laws. The
same proof holds for n = ∞ in a σ-ring R.

b. If X ∈ R, then R is closed under complements, which makes it a (σ-)algebra. If (σ-)ring R is a (σ-)algebra,
then because ∅ = E \ E ∈ R always, we have ∅c = X ∈ R.

c. C is clearly closed under complements. Moreover, if F1, . . . , Fn ∈ C, then
⋃n

i=1 Fi ∈ R ⊆ C: s’pose F c
i ∈ R

for i ∈ I ⊆ [n]. Then
⋃

i/∈I Fi ∪X \
⋂

i∈I F
c
i ∈ R. Note that X = ∅c ∈ C, which makes C a (σ-)algebra

by part b.

d. X ∈ I, so it suffices to show that I is a (σ-)ring. If E ∈ I, then for all F ∈ R, Ec∩F = F \ (E∩F ) ∈ R,
i.e. Ec ∈ I as well. If E1, . . . , En ∈ I, then (

⋃n
i=1 Ei) ∩ F =

⋃n
i=1(Ei ∩ F ) ∈ R, i.e.

⋃n
i=1 Ei ∈ I.

Lastly, we made note of the lack of an “explicit” characterization of F = σ(C) given C: it is not enough to iterate
the operations of countable union and intersection countably many times. Now, using a few more tools from set
theory, we can give a slightly clearer answer.

With C′ = C ∪ {Cc : C ∈ C}, we can assume without loss of generality that C1 = C is closed under complements.
Let C2 = M1(C1) be the set of all countable unions and intersections in C1, or equivalently all countable unions
and complements thereof, so C2 is closed under complements as well. Inducting, let Cω =

⋃∞
n=1 Cn. Cω is closed

under complements, but if En ∈ Cn \ Cn−1,
⋃∞

n=1 En may not belong to Cω. We must go further.

Define Cα for every countable ordinal α by transfinite induction: if α is the successor of β, then let Cα be the set
of all countable unions and intersections in Cα; otherwise, let Cα =

⋃
β∈α Cβ . Letting Ω be the set of countable

ordinals, we have the following result.

Proposition 9 (Constructing a generated σ-algebra).

σ(C) =
⋃

α∈Ω Cα.

Proof. Cα ⊆ σ(C) for all α ∈ Ω by transfinite induction, hence
⋃

α∈Ω Cα ⊆ σ(C). For the other direction, every
countable subset A of Ω has an upper bound:

⋃
α∈A seg(α) is countable, and thus a proper subset of Ω, so there

exists β ∈ Ω such that
⋃

α∈A seg(α) = seg(β). If En ∈ Cαn
for all n ≥ 1 and β := supn≥1 αn, then En ∈ Cβ for

all n, and
⋃∞

n=1 En ∈ Cβ+ . Thus
⋃

α∈Ω Cα is a σ-algebra and equals σ(C) by minimality.

We will continue with Chapter 1.3 of Folland.

■
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