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We finish the summary of Chapter 2 of Complex Variables and Their Applications by Brown and Churchill, 7th edition,
which we started in 2023-01-13.

Proposition 1 (Polar form of Cauchy—Riemann equations).

Let f(z) = u(r,0) + iv(r,0) be defined in some neighborhood of some nonzero point zy = re'?, and suppose
that the first-order partial derivatives of u, v with respect to 7 and 6 exist in said neighborhood. If these partial
derivatives are continuous at (rg,6y) and satisfy the polar Cauchy—Riemann equations

T, = Vg, Up = —TV
at the point (o, 0), then f is differentiable at zg.
f'(z0) = e (u, +iv,)

when evaluated at (rg, 6p).

Proof. By the chain rule, using the relations x = 7 cos6 and y = rsin #, we have that

Up = Uy COS O + Uy Sinh, ug = —ugrsind + uyrcost
and likewise for v;., vg. If the partial derivatives with respect to z,y satisfy u, = vy, uy = —vs, then we get
Up = —Uy cOs O + uy sinf, vy = uy,rsind + u,rcoso.
From this, it follows that ru, = vg and ug = —rv,.. Conversely, if the polar Cauchy—Riemann equations hold, then by
the chain rule again,
sin @ . cosf
Uy = Uy - Ty + Ug - O = UypcosO — ug y Uy =Up Ty +Ug - Oy =u,sinbd 4 ug ,
r r

and likewise for v, v,. Note that

00 1 do 1 -1 1 00  OJarcsin(y/r) 1 1

v~ deosh v Vi—cost9  rsnd’ oy oy 2oy reosd

In other words, the Cartesian Cauchy-Riemann equations are satisfied at zp = (o, yo) iff the polar Cauchy—Riemann




equations are satisfied at zy = (79, 6p). If we suppose that vy = ru,., v, = (=1/7)ug, then

-1 sin 0 cos @ .
vy = —ug cosl — ru, =—| uy +u,sind | = —uy
r r r :
-1 . cos
vy = —Ug sin @ + ru, = Ug.
r r
Thus the two forms of the Cauchy—Riemann equations are equivalent. O

Corollary 1.

With everything the same as in Proposition 1, f/(z) = ;—Di(ue + ivg).

Proof. Given that f/(z9) = u, + iv,, everything evaluated at zo = (zo,yo), we find that
sin 0 sin
fl(z0) = (ur cosf — ug S ) +1 (UT. cosf — vy S )
r r

= (u, + ) cos 0 — (u, + iv,.) sin @

= e (u, + iv,.).

Now, given f'(z9) = e~ (u, + iv,), by the polar Cauchy-Riemann equations,

" Vg — tUg . 1 UQ-i-iU.g_—i .
f'(z0) =e (T ) = = Z—O(ug + ivg).
O
Proposition 2 (Complex form of Cauchy—Riemann equations).
If f(2) =u(x,y) +iv(z,y) satisfies the Cartesian Cauchy—Riemann equations, then 0f/0z = 0, where
9 _1(0 .0
0z 2\0x oy)’
Proof. Given u, = v, and u, = —v;,
of  O(u+iv 1 . _ 1 .
%= % = §(ul. + iy + v, —vy) = 5[(% —vy) +i(uy +v,)] =0.
O

The definition of the operator 9/0% is motivated by the identities © = (2 +%)/2, y = (2 — Z)/24, and a formal symbolic
application of the chain rule to some F(z,y):

OF _OF 0x OF 0y 1 (OF .OF
9z 0x 0z Or 0z 2 ‘

e %“Flaiy

A complex function f is analytic, regular, or holomorphic in a set S if it is differentiable on an open set containing S
(possibly S itself). f is analytic at a point zg if it is analytic in a neighborhood of zy. If f is analytic in the whole plane,



then f is entire. In particular, polynomials are entire. If f is not analytic at zg but /s in a deleted neighborhood of zg,
then 2 is a singular point or singularity of f, e.g. 0 for 1/z, while \2\2 is nowhere analytic and has no singularities.

Continuity and satisfaction of the Cauchy—Riemann equations are necessary but not sufficient conditions for analyticity
in a domain; we have previously seen sufficient condition for differentiability. The sum, product, and composition of
analytic functions remain analytic functions.

Proposition 3 (Derivative zero implies constant).

If f/(z) =0 on a domain D, then f is constant on D.

Proof. Note that any two points P,@Q € D are joined by a finite number of line segments in D concatenated.

i. Let f(z) =u(x,y) +iv(z,y). Given f'(z) =0 on D, we have that u, + iv, = 0, and by the Cauchy—Riemann
equations, vy — ity = 0. Thus u, = uy = v, = v, =0 on D.

ii. Next, we check that u(z,%) is constant along any line segment PQ in D. Let s € [0, 1] parametrize PQ, and let

i be the unit vector in the direction of P(Q). The directional derivative is then

d
disl = (gradu) - @ = (uzi+u,j) -4 =0

along all of PQ, which shows that u is constant on the line segment.
iii. Finally, u(z,y) is constant along any path joined by finite number of line segments in D, which proves that u is

equal at any two points in D, and thus constant on all of D. By the same argument, v(x,y) is constant on D,
so f =u +iv is constant on D.

O
Corollary 2.
If £(2) =u(z,y) +iv(z,y) and f(z) are both analytic in a domain D, then f(z) is constant on D.
Proof. We write U = u and V = —v, such that f = U + iV. By analyticity, the Cauchy—Riemann equations hold:
Uy = Vy, Uy =V, Uy=V,, U,=-V,.
The second set of equations is equivalent to u, = —vy, 4y = v;. Thus u, =0and v, =0, ie. f'(2) =uy +iv, =0
on all of D. We are done by Proposition 3. O

Definition 1 (Harmonic function).

H(z,y): R? — R is harmonic on a domain D if it has continuous first- and second-order partial derivatives on D
and it satisfies Laplace’s equation Hy ,(x,y) + Hy ,(x,y) = 0.

Proposition 4 (An analytic function has harmonic components).

If () =wu(x,y) + iv(z,y) is analytic in a domain D, then u and v are harmonic in D.



Proof. We invoke a result from Chapter 4: if f is analytic at a point, then its components u« and v have continuous
partial derivatives of all orders at that point. Given that f is analytic in D, the Cauchy—Riemann equations hold:

Up = Uy, Uy = —Up.
Differentiating these equations with respect to both x and y,
Upg = Uyg, Uyg = —Upz, Ugy="Uyy, Uyy=—Ugy-
The continuity of the partial derivatives implies the equality of the mixed partial derivatives: uy , = Uy 2, Voy = Uy -
Then gz + uyy =0 and vy 5 + vy, =0, so u and v are harmonic. O
Proposition 5 (Analytic iff components are harmonic conjugates).

f(2) = u(z,y) + tw(z,y) is analytic in D iff v is a harmonic conjugate of w, that is, if u,v are harmonic in D and
their first-order partial derivatives satisfy the Cauchy—Riemann equations on all of D.

Proof. The forward direction follows from Proposition 1 and the previous introduction in 2023-01-13 to the Cauchy—
Riemann equations. The converse follows from the result on sufficient results for differentiability. O
Proposition 6 (Polar form of Laplace's equation).

Let f(2) = u(r,0) + iv(r,0) be analytic in a domain not including the origin. Suppose that the partial derivatives
of u and v are continuous, and the polar Cauchy-Riemann equations hold. Then

rzum(r, 0) + ru,(r,6) + ugo(r,0) =0

at all points in D, and likewise for v(r, 6).

Proof. Per Proposition 4, g 5 + 4y, = 0 on D. Recall that u, = ug cosd + u, sinf. Now, by the chain rule,

) 0 0 0 0 .
Upp = Ug,y COS G + Uy SN0 = %uwx,, + a—yumyr cosf + %uyx,, + a—yuyyr sin 6.

Recalling that &, = cos@ and y, = sinf, and using the fact that u, , = u, » by the continuity of the partial derivatives,
= (Ug,z cOS 8 + Uy 4 sinb) cos O + (uy , cos O + u, ,, sin f) sin d
= (cos® 0)uy, » + (2cos Osin O)u, ,, + (sin? O)uy .

Informally, we may write this in operator notation as

2
Upy = (cos&a + sin93> u.

ox dy
Similarly, recalling that up = —ugrsin @ + uyrcos6, let us find
U9 = —1(Uy cOS O + Uy g sin 6) + r(—uy sin @ + uy g cos b)

= —TUp — Uy 7 SIN O + Uy g7 cOS 0.



Ignoring the —ru,. term in front, by the multivariate chain rule again, this equals

—Ug o7 SIN O + U, g7 COSO = — ﬂu T —&—ﬁu rsiné + gum —l—gu rcos
x,0 vy,0 = Oz Lo ay x Yo Oz yLo ay yYo

= — (—Ugorsind + uy yrcosO) rsinf 4+ (—uy o7 sin @ + u, ,r cos ) rcos
= 1? (Uy,z SIn® 0 — 2uy y cosOsin O + uy,,, cos® 6) .

In operator notation, we can express this as

= —rg—i- —ﬁrsin0+g cos i
uoe = or Ox 8yr -

Now, using the identity cos? 8 + sin® @ = 1, we observe that

1
Ur,r + ﬁ(rur +Ug,0) = Usg + Uyy = 0.

Corollary 3.

_ 1 1
U,z T Uyy = Ury + U + 77UG0-

We finish this chapter by considering how the values of an analytic function on a subdomain or line segment affect or
determine its values on the whole domain.

Proposition 7 (ldentically zero iff zero in subdomain or line segment).

Suppose that f is analytic on D. If f is zero at each point of a domain or line segment contained in D, then f is
identically zero on D.

Proof. Suppose that f(z9) = 0. As D is a connected open set, there exists a zigzag staircase contour or polygonal line
L connecting zg to any other point z in D. Let d > 0 be the shortest distance from this polygonal line to the boundary
of D; if D is the entire plane, take any d > 0. Then pick z, 21, ..., 2n—1, 2, = 2 along L, such that |z; — z;_1] < d
for all 4. Define the neighborhoods Ny, ..., N,, by N; := Ball(z;,d), which are all contained in D.

Borrowing a result from Chapter 6, since f is analytic in the domain Ny, and equals 0 on a subdomain or line segment
containing zg, then f is identically zero on Ny. But z; € Ny; inductively applying this argument, we find that f(z,) = 0.
But z, = z was an arbitrary point in D, so f is identically zero on D. O

By considering the (analytic) difference of two functions f, g which are analytic on the same domain D, and coincide in
some subdomain or along a line segment contained in D, we find the following natural generalization of Proposition 7.

Proposition 8 (Unique analytic extension from subdomain or line segment).

A function analytic in D is uniquely determined on D by its values in a subdomain or along a line segment contained
in D.



Proposition 8 is useful in the problem of extending the domain of an analytic function. If f; is analytic in Dy, then there
may exist an fy analytic in Dy, such that fi and f> agree on Dy N Ds. In this case, f is an analytic continuation of
f1 into Da, and fo is unique if it exists by Proposition 8! (We assume D; and D5 are not disjoint, so that f; = fo on
Dy N Dy is not a vacuous statement.) Then,

_Jhz) ifzeDy
Fz) = {fg(z) if z € Dy

is a well-defined analytic function on D1 U Do, and fi, fo are called elements of F'.

Proposition 9 (Reflection principle).

Suppose that f is an analytic in a domain D that contains a segment of the z-axis and is symmetric under reflection
over the z-axis. Then f(z) = f(2) for all z € D iff f(x) € R for all z on the segment.

Proof. Suppose that f is real on the segment of the x-axis in D. Let us show that
F(z) = f(z) = Uz, y) + 1V (z,y)

is analytic. We see that U(z,y) = u(z, —y) and V(x,y) = —v(z, —y), where f(z) = u(x,y) +iv(x,y). Write t :== —y,
and observe that f(x + it) is an analytic function of x + it. Invoking the result borrowed from Chapter 4 in the proof
of Proposition 4, the first-order partial derivatives are continuous on D and satisfy the Cauchy-Riemann equations

Uy = Vg, Ut = —VUg.
Reverting the change of variables y = —t, we see that U, = uy, Uy = —uy, Vy = —v,, Vy =1y, e
U=V, Uy=-V,.

Thus F' is analytic on D: the first-order partial derivatives of U and V' are continuous and satisfy the Cauchy—Riemann
equations on D. We also note that by our initial assumption,

F(z) = f(z) = f(2) = f(2)

for every z on the z-axis. By Proposition 8, we actually have F'(z) = f(z) on all of D. That is, f(Z) = f(z) on D,

which is equivalent to f(z) = f(Z) above by symmetry. The converse is much simpler: if f(z) = f(Z) holds, then for
all z =z on the x-axis, we see that iv(z,0) = —iv(z, —0), or

f() =) = f(2) = [(2).
O

For example, z + 1 and 22 have the reflection property, as they are real when z is real, while z + i and iz? do not have
the reflection property on the entire plane.

We will continue with elementary functions in Chapter 3.



