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We finish the summary of Chapter 2 of Complex Variables and Their Applications by Brown and Churchill, 7th edition,
which we started in 2023-01-13.

Proposition 1 (Polar form of Cauchy–Riemann equations).

Let f(z) = u(r, θ) + iv(r, θ) be defined in some neighborhood of some nonzero point z0 = r0e
iθ0, and suppose

that the first-order partial derivatives of u, v with respect to r and θ exist in said neighborhood. If these partial
derivatives are continuous at (r0, θ0) and satisfy the polar Cauchy–Riemann equations

rur = vθ, uθ = −rvr

at the point (r0, θ0), then f is differentiable at z0.

f ′(z0) = e−iθ(ur + ivr)

when evaluated at (r0, θ0).

Proof. By the chain rule, using the relations x = r cos θ and y = r sin θ, we have that

ur = ux cos θ+ uy sin θ, uθ = −uxr sin θ+ uyr cos θ

and likewise for vr, vθ. If the partial derivatives with respect to x, y satisfy ux = vy, uy = −vx, then we get

vr = −uy cos θ+ ux sin θ, vθ = uyr sin θ+ uxr cos θ.

From this, it follows that rur = vθ and uθ = −rvr. Conversely, if the polar Cauchy–Riemann equations hold, then by
the chain rule again,

ux = ur · rx + uθ · θx = ur cos θ− uθ
sin θ

r
, uy = ur · ry + uθ · θy = ur sin θ+ uθ

cos θ

r
,

and likewise for vx, vy. Note that

∂θ

∂x
=

1

r
· dθ

dcos θ
=

1

r
· −1√

1− cos2 θ
= − 1

r sin θ
,

∂θ

∂y
=

∂ arcsin(y/r)

∂y
=

1√
r2 − y2

=
1

r cos θ
.

In other words, the Cartesian Cauchy–Riemann equations are satisfied at z0 = (x0, y0) iff the polar Cauchy–Riemann
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equations are satisfied at z0 = (r0, θ0). If we suppose that vθ = rur, vr = (−1/r)uθ, then

vx =
−1

r
uθ cos θ− rur

sin θ

r
= −

(
uθ

cos θ

r
+ ur sin θ

)
= −uy

vy =
−1

r
uθ sin θ+ rur

cos θ

r
= ux.

Thus the two forms of the Cauchy–Riemann equations are equivalent.

Corollary 1.

With everything the same as in Proposition 1, f ′(z0) =
−i
z0
(uθ + ivθ).

Proof. Given that f ′(z0) = ux + ivx, everything evaluated at z0 = (x0, y0), we find that

f ′(z0) =

(
ur cos θ− uθ

sin θ

r

)
+ i

(
vr cos θ− vθ

sin θ

r

)
= (ur + ivr) cos θ− (ur + ivr) sin θ

= e−iθ(ur + ivr).

Now, given f ′(z0) = e−iθ(ur + ivr), by the polar Cauchy–Riemann equations,

f ′(z0) = e−iθ

(
vθ − iuθ

r

)
=

1

reiθ
uθ + ivθ

i
=

−i

z0
(uθ + ivθ).

Proposition 2 (Complex form of Cauchy–Riemann equations).

If f(z) = u(x, y) + iv(x, y) satisfies the Cartesian Cauchy–Riemann equations, then ∂f/∂z = 0, where

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Proof. Given ux = vy and uy = −vx,

∂f

∂z
=

∂(u+ iv)

∂z
=

1

2
(ux + iuy + ivx − vy) =

1

2
[(ux − vy) + i(uy + vx)] = 0.

The definition of the operator ∂/∂z is motivated by the identities x = (z+ z)/2, y = (z− z)/2i, and a formal symbolic
application of the chain rule to some F (x, y):

∂F

∂z
=

∂F

∂x
· ∂x
∂z

+
∂F

∂x
· ∂y
∂z

=
1

2

(
∂F

∂x
+ i

∂F

∂y

)
.

A complex function f is analytic, regular, or holomorphic in a set S if it is differentiable on an open set containing S
(possibly S itself). f is analytic at a point z0 if it is analytic in a neighborhood of z0. If f is analytic in the whole plane,
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then f is entire. In particular, polynomials are entire. If f is not analytic at z0 but is in a deleted neighborhood of z0,
then z0 is a singular point or singularity of f , e.g. 0 for 1/z, while |z|2 is nowhere analytic and has no singularities.

Continuity and satisfaction of the Cauchy–Riemann equations are necessary but not sufficient conditions for analyticity
in a domain; we have previously seen sufficient condition for differentiability. The sum, product, and composition of
analytic functions remain analytic functions.

Proposition 3 (Derivative zero implies constant).

If f ′(z) = 0 on a domain D, then f is constant on D.

Proof. Note that any two points P,Q ∈ D are joined by a finite number of line segments in D concatenated.

i. Let f(z) = u(x, y) + iv(x, y). Given f ′(z) = 0 on D, we have that ux + ivx = 0, and by the Cauchy–Riemann
equations, vy − iuy = 0. Thus ux = uy = vx = vy = 0 on D.

ii. Next, we check that u(x, y) is constant along any line segment PQ in D. Let s ∈ [0,1] parametrize PQ, and let
u⃗ be the unit vector in the direction of PQ. The directional derivative is then

du

ds
= (gradu) · u⃗ = (ux̂ı+ uy ȷ̂) · u⃗ = 0

along all of PQ, which shows that u is constant on the line segment.

iii. Finally, u(x, y) is constant along any path joined by finite number of line segments in D, which proves that u is
equal at any two points in D, and thus constant on all of D. By the same argument, v(x, y) is constant on D,
so f = u+ iv is constant on D.

Corollary 2.

If f(z) = u(x, y) + iv(x, y) and f(z) are both analytic in a domain D, then f(z) is constant on D.

Proof. We write U = u and V = −v, such that f = U + iV . By analyticity, the Cauchy–Riemann equations hold:

ux = vy, uy = −vx, Ux = Vy, Uy = −Vx.

The second set of equations is equivalent to ux = −vy, uy = vx. Thus ux = 0 and vx = 0, i.e. f ′(z) = ux + ivx = 0
on all of D. We are done by Proposition 3.

Definition 1 (Harmonic function).

H(x, y): R2 → R is harmonic on a domain D if it has continuous first- and second-order partial derivatives on D
and it satisfies Laplace’s equation Hx,x(x, y) +Hy,y(x, y) = 0.

Proposition 4 (An analytic function has harmonic components).

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then u and v are harmonic in D.
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Proof. We invoke a result from Chapter 4: if f is analytic at a point, then its components u and v have continuous
partial derivatives of all orders at that point. Given that f is analytic in D, the Cauchy–Riemann equations hold:

ux = vy, uy = −vx.

Differentiating these equations with respect to both x and y,

ux,x = vy,x, uy,x = −vx,x, ux,y = vy,y, uy,y = −vx,y.

The continuity of the partial derivatives implies the equality of the mixed partial derivatives: ux,y = uy,x, vx,y = vy,x.
Then ux,x + uy,y = 0 and vx,x + vy,y = 0, so u and v are harmonic.

Proposition 5 (Analytic iff components are harmonic conjugates).

f(z) = u(x, y) + iv(x, y) is analytic in D iff v is a harmonic conjugate of u, that is, if u, v are harmonic in D and
their first-order partial derivatives satisfy the Cauchy–Riemann equations on all of D.

Proof. The forward direction follows from Proposition 1 and the previous introduction in 2023-01-13 to the Cauchy–
Riemann equations. The converse follows from the result on sufficient results for differentiability.

Proposition 6 (Polar form of Laplace’s equation).

Let f(z) = u(r, θ) + iv(r, θ) be analytic in a domain not including the origin. Suppose that the partial derivatives
of u and v are continuous, and the polar Cauchy–Riemann equations hold. Then

r2ur,r(r, θ) + rur(r, θ) + uθ,θ(r, θ) = 0

at all points in D, and likewise for v(r, θ).

Proof. Per Proposition 4, ux,x + uy,y = 0 on D. Recall that ur = ux cos θ+ uy sin θ. Now, by the chain rule,

ur,r = ux,r cos θ+ uy,r sin θ =

(
∂

∂x
uxxr +

∂

∂y
uxyr

)
cos θ+

(
∂

∂x
uyxr +

∂

∂y
uyyr

)
sin θ.

Recalling that xr = cos θ and yr = sin θ, and using the fact that ux,y = uy,x by the continuity of the partial derivatives,

= (ux,x cos θ+ ux,y sin θ) cos θ+ (uy,x cos θ+ uy,y sin θ) sin θ

= (cos2 θ)ux,x + (2cos θ sin θ)ux,y + (sin2 θ)uy,y.

Informally, we may write this in operator notation as

ur,r =

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)2

u.

Similarly, recalling that uθ = −uxr sin θ+ uyr cos θ, let us find

uθ,θ = −r(ux cos θ+ ux,θ sin θ) + r(−uy sin θ+ uy,θ cos θ)

= −rur − ux,θr sin θ+ uy,θr cos θ.
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Ignoring the −rur term in front, by the multivariate chain rule again, this equals

−ux,θr sin θ+ uy,θr cos θ = −
(

∂

∂x
uxxθ +

∂

∂y
uxyθ

)
r sin θ+

(
∂

∂x
uyxθ +

∂

∂y
uyyθ

)
r cos θ

= − (−ux,xr sin θ+ ux,yr cos θ) r sin θ+ (−uy,xr sin θ+ uy,yr cos θ) r cos θ

= r2
(
ux,x sin

2 θ− 2ux,y cos θ sin θ+ uy,y cos
2 θ

)
.

In operator notation, we can express this as

uθ,θ =

[
−r

∂

∂r
+

(
− ∂

∂x
r sin θ+

∂

∂y
r cos θ

)2
]
u.

Now, using the identity cos2 θ+ sin2 θ = 1, we observe that

ur,r +
1

r2
(rur + uθ,θ) = ux,x + uy,y = 0.

Corollary 3.

ux,x + uy,y = ur,r +
1
rur +

1
r2uθ,θ.

We finish this chapter by considering how the values of an analytic function on a subdomain or line segment affect or
determine its values on the whole domain.

Proposition 7 (Identically zero iff zero in subdomain or line segment).

Suppose that f is analytic on D. If f is zero at each point of a domain or line segment contained in D, then f is
identically zero on D.

Proof. Suppose that f(z0) = 0. As D is a connected open set, there exists a zigzag staircase contour or polygonal line
L connecting z0 to any other point z in D. Let d > 0 be the shortest distance from this polygonal line to the boundary
of D; if D is the entire plane, take any d > 0. Then pick z0, z1, . . . , zn−1, zn = z along L, such that |zi − zi−1| < d
for all i. Define the neighborhoods N0, . . . ,Nn by Ni := Ball(zi, d), which are all contained in D.

Borrowing a result from Chapter 6, since f is analytic in the domain N0, and equals 0 on a subdomain or line segment
containing z0, then f is identically zero on N0. But z1 ∈ N0; inductively applying this argument, we find that f(zn) = 0.
But zn = z was an arbitrary point in D, so f is identically zero on D.

By considering the (analytic) difference of two functions f, g which are analytic on the same domain D, and coincide in
some subdomain or along a line segment contained in D, we find the following natural generalization of Proposition 7.

Proposition 8 (Unique analytic extension from subdomain or line segment).

A function analytic in D is uniquely determined on D by its values in a subdomain or along a line segment contained
in D.
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Proposition 8 is useful in the problem of extending the domain of an analytic function. If f1 is analytic in D1, then there
may exist an f2 analytic in D2, such that f1 and f2 agree on D1 ∩D2. In this case, f2 is an analytic continuation of
f1 into D2, and f2 is unique if it exists by Proposition 8! (We assume D1 and D2 are not disjoint, so that f1 = f2 on
D1 ∩D2 is not a vacuous statement.) Then,

F (z) =

{
f1(z) if z ∈ D1

f2(z) if z ∈ D2

is a well-defined analytic function on D1 ∪D2, and f1, f2 are called elements of F .

Proposition 9 (Reflection principle).

Suppose that f is an analytic in a domain D that contains a segment of the x-axis and is symmetric under reflection
over the x-axis. Then f(z) = f(z) for all z ∈ D iff f(x) ∈ R for all x on the segment.

Proof. Suppose that f is real on the segment of the x-axis in D. Let us show that

F (z) = f(z) := U(x, y) + iV (x, y)

is analytic. We see that U(x, y) = u(x,−y) and V (x, y) = −v(x,−y), where f(z) = u(x, y)+iv(x, y). Write t := −y,
and observe that f(x+ it) is an analytic function of x+ it. Invoking the result borrowed from Chapter 4 in the proof
of Proposition 4, the first-order partial derivatives are continuous on D and satisfy the Cauchy–Riemann equations

ux = vt, ut = −vx.

Reverting the change of variables y = −t, we see that Ux = ux, Uy = −ut, Vx = −vx, Vy = vt, i.e.

Ux = Vy, Uy = −Vx.

Thus F is analytic on D: the first-order partial derivatives of U and V are continuous and satisfy the Cauchy–Riemann
equations on D. We also note that by our initial assumption,

F (z) = f(z) = f(z) = f(z)

for every z on the x-axis. By Proposition 8, we actually have F(z) = f(z) on all of D. That is, f(z) = f(z) on D,
which is equivalent to f(z) = f(z) above by symmetry. The converse is much simpler: if f(z) = f(z) holds, then for
all z = z on the x-axis, we see that iv(x,0) = −iv(x,−0), or

f(z) = f(z) = f(z) = f(z).

For example, z + 1 and z2 have the reflection property, as they are real when z is real, while z + i and iz2 do not have
the reflection property on the entire plane.

We will continue with elementary functions in Chapter 3.

■
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