Introduction to complex analysis continued

Alex Fu

2023-01-16

We finish the summary of Chapter 2 of Complex Variables and Their Applications by Brown and Churchill, 7th edition, which we started in 2023-01-13.

Proposition 1 (Polar form of Cauchy-Riemann equations).
Let $f(z)=u(r, \theta)+i v(r, \theta)$ be defined in some neighborhood of some nonzero point $z_{0}=r_{0} e^{i \theta_{0}}$, and suppose that the first-order partial derivatives of u, v with respect to r and θ exist in said neighborhood. If these partial derivatives are continuous at $\left(r_{0}, \theta_{0}\right)$ and satisfy the polar Cauchy-Riemann equations

$$
r u_{r}=v_{\theta}, \quad u_{\theta}=-r v_{r}
$$

at the point $\left(r_{0}, \theta_{0}\right)$, then f is differentiable at z_{0}.

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

when evaluated at $\left(r_{0}, \theta_{0}\right)$.

Proof. By the chain rule, using the relations $x=r \cos \theta$ and $y=r \sin \theta$, we have that

$$
u_{r}=u_{x} \cos \theta+u_{y} \sin \theta, \quad u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta
$$

and likewise for v_{r}, v_{θ}. If the partial derivatives with respect to x, y satisfy $u_{x}=v_{y}, u_{y}=-v_{x}$, then we get

$$
v_{r}=-u_{y} \cos \theta+u_{x} \sin \theta, \quad v_{\theta}=u_{y} r \sin \theta+u_{x} r \cos \theta .
$$

From this, it follows that $r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$. Conversely, if the polar Cauchy-Riemann equations hold, then by the chain rule again,

$$
u_{x}=u_{r} \cdot r_{x}+u_{\theta} \cdot \theta_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}, \quad u_{y}=u_{r} \cdot r_{y}+u_{\theta} \cdot \theta_{y}=u_{r} \sin \theta+u_{\theta} \frac{\cos \theta}{r},
$$

and likewise for v_{x}, v_{y}. Note that

$$
\frac{\partial \theta}{\partial x}=\frac{1}{r} \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} \cos \theta}=\frac{1}{r} \cdot \frac{-1}{\sqrt{1-\cos ^{2} \theta}}=-\frac{1}{r \sin \theta}, \quad \frac{\partial \theta}{\partial y}=\frac{\partial \arcsin (y / r)}{\partial y}=\frac{1}{\sqrt{r^{2}-y^{2}}}=\frac{1}{r \cos \theta} .
$$

In other words, the Cartesian Cauchy-Riemann equations are satisfied at $z_{0}=\left(x_{0}, y_{0}\right)$ iff the polar Cauchy-Riemann
equations are satisfied at $z_{0}=\left(r_{0}, \theta_{0}\right)$. If we suppose that $v_{\theta}=r u_{r}, v_{r}=(-1 / r) u_{\theta}$, then

$$
\begin{aligned}
& v_{x}=\frac{-1}{r} u_{\theta} \cos \theta-r u_{r} \frac{\sin \theta}{r}=-\left(u_{\theta} \frac{\cos \theta}{r}+u_{r} \sin \theta\right)=-u_{y} \\
& v_{y}=\frac{-1}{r} u_{\theta} \sin \theta+r u_{r} \frac{\cos \theta}{r}=u_{x}
\end{aligned}
$$

Thus the two forms of the Cauchy-Riemann equations are equivalent.

Corollary 1.

With everything the same as in Proposition $1, f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right)$.

Proof. Given that $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}$, everything evaluated at $z_{0}=\left(x_{0}, y_{0}\right)$, we find that

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\left(u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}\right)+i\left(v_{r} \cos \theta-v_{\theta} \frac{\sin \theta}{r}\right) \\
& =\left(u_{r}+i v_{r}\right) \cos \theta-\left(u_{r}+i v_{r}\right) \sin \theta \\
& =e^{-i \theta}\left(u_{r}+i v_{r}\right)
\end{aligned}
$$

Now, given $f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$, by the polar Cauchy-Riemann equations,

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(\frac{v_{\theta}-i u_{\theta}}{r}\right)=\frac{1}{r e^{i \theta}} \frac{u_{\theta}+i v_{\theta}}{i}=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right) .
$$

Proposition 2 (Complex form of Cauchy-Riemann equations).
If $f(z)=u(x, y)+i v(x, y)$ satisfies the Cartesian Cauchy-Riemann equations, then $\partial f / \partial \bar{z}=0$, where

$$
\frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

Proof. Given $u_{x}=v_{y}$ and $u_{y}=-v_{x}$,

$$
\frac{\partial f}{\partial \bar{z}}=\frac{\partial(u+i v)}{\partial \bar{z}}=\frac{1}{2}\left(u_{x}+i u_{y}+i v_{x}-v_{y}\right)=\frac{1}{2}\left[\left(u_{x}-v_{y}\right)+i\left(u_{y}+v_{x}\right)\right]=0
$$

The definition of the operator $\partial / \partial \bar{z}$ is motivated by the identities $x=(z+\bar{z}) / 2, y=(z-\bar{z}) / 2 i$, and a formal symbolic application of the chain rule to some $F(x, y)$:

$$
\frac{\partial F}{\partial \bar{z}}=\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \bar{z}}+\frac{\partial F}{\partial x} \cdot \frac{\partial y}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial F}{\partial x}+i \frac{\partial F}{\partial y}\right)
$$

A complex function f is analytic, regular, or holomorphic in a set S if it is differentiable on an open set containing S (possibly S itself). f is analytic at a point z_{0} if it is analytic in a neighborhood of z_{0}. If f is analytic in the whole plane,
then f is entire. In particular, polynomials are entire. If f is not analytic at z_{0} but is in a deleted neighborhood of z_{0}, then z_{0} is a singular point or singularity of f, e.g. 0 for $1 / z$, while $|z|^{2}$ is nowhere analytic and has no singularities.

Continuity and satisfaction of the Cauchy-Riemann equations are necessary but not sufficient conditions for analyticity in a domain; we have previously seen sufficient condition for differentiability. The sum, product, and composition of analytic functions remain analytic functions.

Proposition 3 (Derivative zero implies constant).
If $f^{\prime}(z)=0$ on a domain D, then f is constant on D.

Proof. Note that any two points $P, Q \in D$ are joined by a finite number of line segments in D concatenated.
i. Let $f(z)=u(x, y)+i v(x, y)$. Given $f^{\prime}(z)=0$ on D, we have that $u_{x}+i v_{x}=0$, and by the Cauchy-Riemann equations, $v_{y}-i u_{y}=0$. Thus $u_{x}=u_{y}=v_{x}=v_{y}=0$ on D.
ii. Next, we check that $u(x, y)$ is constant along any line segment $\overline{P Q}$ in D. Let $s \in[0,1]$ parametrize $\overline{P Q}$, and let \vec{u} be the unit vector in the direction of $\overline{P Q}$. The directional derivative is then

$$
\frac{d u}{d s}=(\operatorname{grad} u) \cdot \vec{u}=\left(u_{x} \hat{\mathbf{\imath}}+u_{y} \hat{\mathbf{\jmath}}\right) \cdot \vec{u}=0
$$

along all of $\overline{P Q}$, which shows that u is constant on the line segment.
iii. Finally, $u(x, y)$ is constant along any path joined by finite number of line segments in D, which proves that u is equal at any two points in D, and thus constant on all of D. By the same argument, $v(x, y)$ is constant on D, so $f=u+i v$ is constant on D.

Corollary 2.

If $f(z)=u(x, y)+i v(x, y)$ and $\overline{f(z)}$ are both analytic in a domain D, then $f(z)$ is constant on D.

Proof. We write $U=u$ and $V=-v$, such that $\bar{f}=U+i V$. By analyticity, the Cauchy-Riemann equations hold:

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}, \quad U_{x}=V_{y}, \quad U_{y}=-V_{x}
$$

The second set of equations is equivalent to $u_{x}=-v_{y}, u_{y}=v_{x}$. Thus $u_{x}=0$ and $v_{x}=0$, i.e. $f^{\prime}(z)=u_{x}+i v_{x}=0$ on all of D. We are done by Proposition 3 .

Definition 1 (Harmonic function).
$H(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic on a domain D if it has continuous first- and second-order partial derivatives on D and it satisfies Laplace's equation $H_{x, x}(x, y)+H_{y, y}(x, y)=0$.

Proposition 4 (An analytic function has harmonic components).
If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then u and v are harmonic in D.

Proof. We invoke a result from Chapter 4: if f is analytic at a point, then its components u and v have continuous partial derivatives of all orders at that point. Given that f is analytic in D, the Cauchy-Riemann equations hold:

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

Differentiating these equations with respect to both x and y,

$$
u_{x, x}=v_{y, x}, \quad u_{y, x}=-v_{x, x}, \quad u_{x, y}=v_{y, y}, \quad u_{y, y}=-v_{x, y} .
$$

The continuity of the partial derivatives implies the equality of the mixed partial derivatives: $u_{x, y}=u_{y, x}, v_{x, y}=v_{y, x}$. Then $u_{x, x}+u_{y, y}=0$ and $v_{x, x}+v_{y, y}=0$, so u and v are harmonic.

Proposition 5 (Analytic iff components are harmonic conjugates).
$f(z)=u(x, y)+i v(x, y)$ is analytic in D iff v is a harmonic conjugate of u, that is, if u, v are harmonic in D and their first-order partial derivatives satisfy the Cauchy-Riemann equations on all of D.

Proof. The forward direction follows from Proposition 1 and the previous introduction in 2023-01-13 to the CauchyRiemann equations. The converse follows from the result on sufficient results for differentiability.

Proposition 6 (Polar form of Laplace's equation).
Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic in a domain not including the origin. Suppose that the partial derivatives of u and v are continuous, and the polar Cauchy-Riemann equations hold. Then

$$
r^{2} u_{r, r}(r, \theta)+r u_{r}(r, \theta)+u_{\theta, \theta}(r, \theta)=0
$$

at all points in D, and likewise for $v(r, \theta)$.

Proof. Per Proposition 4, $u_{x, x}+u_{y, y}=0$ on D. Recall that $u_{r}=u_{x} \cos \theta+u_{y} \sin \theta$. Now, by the chain rule,

$$
u_{r, r}=u_{x, r} \cos \theta+u_{y, r} \sin \theta=\left(\frac{\partial}{\partial x} u_{x} x_{r}+\frac{\partial}{\partial y} u_{x} y_{r}\right) \cos \theta+\left(\frac{\partial}{\partial x} u_{y} x_{r}+\frac{\partial}{\partial y} u_{y} y_{r}\right) \sin \theta
$$

Recalling that $x_{r}=\cos \theta$ and $y_{r}=\sin \theta$, and using the fact that $u_{x, y}=u_{y, x}$ by the continuity of the partial derivatives,

$$
\begin{aligned}
& =\left(u_{x, x} \cos \theta+u_{x, y} \sin \theta\right) \cos \theta+\left(u_{y, x} \cos \theta+u_{y, y} \sin \theta\right) \sin \theta \\
& =\left(\cos ^{2} \theta\right) u_{x, x}+(2 \cos \theta \sin \theta) u_{x, y}+\left(\sin ^{2} \theta\right) u_{y, y}
\end{aligned}
$$

Informally, we may write this in operator notation as

$$
u_{r, r}=\left(\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}\right)^{2} u
$$

Similarly, recalling that $u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta$, let us find

$$
\begin{aligned}
u_{\theta, \theta} & =-r\left(u_{x} \cos \theta+u_{x, \theta} \sin \theta\right)+r\left(-u_{y} \sin \theta+u_{y, \theta} \cos \theta\right) \\
& =-r u_{r}-u_{x, \theta} r \sin \theta+u_{y, \theta} r \cos \theta .
\end{aligned}
$$

Ignoring the $-r u_{r}$ term in front, by the multivariate chain rule again, this equals

$$
\begin{aligned}
-u_{x, \theta} r \sin \theta+u_{y, \theta} r \cos \theta & =-\left(\frac{\partial}{\partial x} u_{x} x_{\theta}+\frac{\partial}{\partial y} u_{x} y_{\theta}\right) r \sin \theta+\left(\frac{\partial}{\partial x} u_{y} x_{\theta}+\frac{\partial}{\partial y} u_{y} y_{\theta}\right) r \cos \theta \\
& =-\left(-u_{x, x} r \sin \theta+u_{x, y} r \cos \theta\right) r \sin \theta+\left(-u_{y, x} r \sin \theta+u_{y, y} r \cos \theta\right) r \cos \theta \\
& =r^{2}\left(u_{x, x} \sin ^{2} \theta-2 u_{x, y} \cos \theta \sin \theta+u_{y, y} \cos ^{2} \theta\right)
\end{aligned}
$$

In operator notation, we can express this as

$$
u_{\theta, \theta}=\left[-r \frac{\partial}{\partial r}+\left(-\frac{\partial}{\partial x} r \sin \theta+\frac{\partial}{\partial y} r \cos \theta\right)^{2}\right] u
$$

Now, using the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, we observe that

$$
u_{r, r}+\frac{1}{r^{2}}\left(r u_{r}+u_{\theta, \theta}\right)=u_{x, x}+u_{y, y}=0
$$

Corollary 3.

$$
u_{x, x}+u_{y, y}=u_{r, r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta, \theta}
$$

We finish this chapter by considering how the values of an analytic function on a subdomain or line segment affect or determine its values on the whole domain.

Proposition 7 (Identically zero iff zero in subdomain or line segment).
Suppose that f is analytic on D. If f is zero at each point of a domain or line segment contained in D, then f is identically zero on D.

Proof. Suppose that $f\left(z_{0}\right)=0$. As D is a connected open set, there exists a zigzag staircase contour or polygonal line L connecting z_{0} to any other point z in D. Let $d>0$ be the shortest distance from this polygonal line to the boundary of D; if D is the entire plane, take any $d>0$. Then pick $z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=z$ along L, such that $\left|z_{i}-z_{i-1}\right|<d$ for all i. Define the neighborhoods N_{0}, \ldots, N_{n} by $N_{i}:=\mathrm{Ball}\left(z_{i}, d\right)$, which are all contained in D.

Borrowing a result from Chapter 6 , since f is analytic in the domain N_{0}, and equals 0 on a subdomain or line segment containing z_{0}, then f is identically zero on N_{0}. But $z_{1} \in N_{0}$; inductively applying this argument, we find that $f\left(z_{n}\right)=0$. But $z_{n}=z$ was an arbitrary point in D, so f is identically zero on D.

By considering the (analytic) difference of two functions f, g which are analytic on the same domain D, and coincide in some subdomain or along a line segment contained in D, we find the following natural generalization of Proposition 7.

Proposition 8 (Unique analytic extension from subdomain or line segment).
A function analytic in D is uniquely determined on D by its values in a subdomain or along a line segment contained in D.

Proposition 8 is useful in the problem of extending the domain of an analytic function. If f_{1} is analytic in D_{1}, then there may exist an f_{2} analytic in D_{2}, such that f_{1} and f_{2} agree on $D_{1} \cap D_{2}$. In this case, f_{2} is an analytic continuation of f_{1} into D_{2}, and f_{2} is unique if it exists by Proposition 8! (We assume D_{1} and D_{2} are not disjoint, so that $f_{1}=f_{2}$ on $D_{1} \cap D_{2}$ is not a vacuous statement.) Then,

$$
F(z)= \begin{cases}f_{1}(z) & \text { if } z \in D_{1} \\ f_{2}(z) & \text { if } z \in D_{2}\end{cases}
$$

is a well-defined analytic function on $D_{1} \cup D_{2}$, and f_{1}, f_{2} are called elements of F.

Proposition 9 (Reflection principle).
Suppose that f is an analytic in a domain D that contains a segment of the x-axis and is symmetric under reflection over the x-axis. Then $\overline{f(z)}=f(\bar{z})$ for all $z \in D$ iff $f(x) \in \mathbb{R}$ for all x on the segment.

Proof. Suppose that f is real on the segment of the x-axis in D. Let us show that

$$
F(z)=\overline{f(\bar{z})}:=U(x, y)+i V(x, y)
$$

is analytic. We see that $U(x, y)=u(x,-y)$ and $V(x, y)=-v(x,-y)$, where $f(z)=u(x, y)+i v(x, y)$. Write $t:=-y$, and observe that $f(x+i t)$ is an analytic function of $x+i t$. Invoking the result borrowed from Chapter 4 in the proof of Proposition 4, the first-order partial derivatives are continuous on D and satisfy the Cauchy-Riemann equations

$$
u_{x}=v_{t}, \quad u_{t}=-v_{x} .
$$

Reverting the change of variables $y=-t$, we see that $U_{x}=u_{x}, U_{y}=-u_{t}, V_{x}=-v_{x}, V_{y}=v_{t}$, i.e.

$$
U_{x}=V_{y}, \quad U_{y}=-V_{x}
$$

Thus F is analytic on D : the first-order partial derivatives of U and V are continuous and satisfy the Cauchy-Riemann equations on D. We also note that by our initial assumption,

$$
F(z)=\overline{f(\bar{z})}=f(\bar{z})=f(z)
$$

for every z on the x-axis. By Proposition 8, we actually have $F(z)=f(z)$ on all of D. That is, $\overline{f(\bar{z})}=f(z)$ on D,
 all $z=\bar{z}$ on the x-axis, we see that $i v(x, 0)=-i v(x,-0)$, or

$$
\overline{f(z)}=\overline{f(\bar{z})}=f(z)=f(\bar{z})
$$

For example, $z+1$ and z^{2} have the reflection property, as they are real when z is real, while $z+i$ and $i z^{2}$ do not have the reflection property on the entire plane.

We will continue with elementary functions in Chapter 3.

