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This note is adapted from Chapter 6 of Probability: Theory and Examples by Rick Durrett, 5th edition.

We will not delve too deep into the intuition and motivations for ergodicity and mixing; we give just one example in
ergodic Markov chains. An irreducible chain has its state space strongly connected by transitions; the state space
cannot be partitioned into smaller irreducible components, or decomposed into “disjoint,” non-communicating regions
such that the flow of probability mass only circulates within each “closed” area. An aperiodic chain is not forced by
its structure to lock in to a given pattern of cyclically alternating distributions. A positive recurrent chain does not
face the issue of mass escaping off to infinity or never returning in transient chains, or the issue of mass being spread
so thin as to be “infinitesimal” in null recurrent chains: it revisits its states frequently enough to generate probability
mass in the long-run proportion.

A positive recurrent chain supports a stationary distribution, an “eigendistribution” invariant under any transition of
the model, while an irreducible chain has at most one stationary distribution, and an aperiodic chain is free enough to
eventually converge to a stationary or limiting distribution. A regular chain is both irreducible and aperiodic: there
admits some k for which P k > 0, so everything is reachable from everything else every k steps, and strictly positive
transition probabilities give a maximal chance at dispersion and settling into a stable long-term distribution, as we
might imagine. An ergodic chain is positive recurrent on top of regularity: regardless of its initial distribution, even
if it starts from the most concentrated point mass measure, its dispersion will converge with probability 1 to the
unique stationary distribution. The trajectory of any particle eventually stabilizes and behaves in accordance with the
limiting distribution almost surely, and transitions preserve the invariant distribution.

After some long rambling, let us return to the content at hand.

Definition 1 (Stationary sequence).

A sequence of random variables (Xn)n∈N is a stationary discrete-time random process or a stationary sequence
if its finite-dimensional distributions are invariant under any translations or shifts in time. That is, for all n ∈ N
and k ∈ N,

(X0, . . . ,Xn)
d
= (Xk, . . . ,Xn+k).

Examples of stationary sequences:

• X0,X1, . . . i.i.d.

• (Xn)n∈N a Markov chain with stationary distribution and X0 ∼ π.

• Let Ω = [0, 1) with P the Lebesgue measure. Pick 0 < θ < 1 and let Xn(ω) = (ω + nθ) mod 1. We may also
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formulate this as a Markov chain with transition probabilities p(x, (x+ θ) mod 1) = 1. Under the inclusion
x 7→ e2πix, this process is simply rotation by θ at each time step, with X0 ∼ Uniform.

• Let (Ω,F ,P) be a probability space. A measurable function φ : Ω → Ω is measure-preserving if P(φ−1(A)) =
P(A) for all A ∈ F . If X is some random variable on Ω (i.e. F-measurable), then

Xn(ω) = X(φnω), n ∈ N

forms a stationary sequence. Note that φ0 = id. To check stationarity, let B ⊆ Rn+1 be a Borel set, and let
A = {ω : (X0(ω), . . . ,Xn(ω)) ∈ B} be its preimage under the finite-dimensional distribution. Then

P((Xk, . . . ,Xn+k) ∈ B) = P(φkω ∈ A) = P(ω ∈ A) = P((X0, . . . ,Xn) ∈ B)

by the fact that φ, and by induction φn for any n ∈ N, is measure-preserving. We suppress the parentheses for
φkω as we think of φ as a transformation operator, like a linear map T on a vector space.

The last example is in fact the only example. If (Yn)n∈N is any stationary sequence, taking values in a sufficiently
nice space S, then by Kolmogorov’s extension theorem, there exists a probability measure P on the sequence space
(SN,ΣN) such that Xn(ω) = ωn has the same distribution as (Yn)n∈N. If φ is the shift operator

φ(ω0, ω1, ω2, . . .) := (ω1, ω2, . . .)

and X(ω) := ω0, then φ is measure-preserving and Xn(ω) = X(φnω).

From here on out, we will assume that φ is a measure-preserving transformation on Ω.

Definition 2 (Invariant event).

An event A ∈ F is (φ-)invariant if φ−1(A) = A almost surely. We say that two events A,B are equal (P-)almost
surely if 1A = 1B a.s., or equivalently P(A△B) = 0, where A△B = (A \B)⊔ (B \A) = (A∪B) \ (A∩B)
denotes the symmetric set difference.

We write I for the collection of φ-invariant events in F , which we could also denote Fφ or Fφ, taking inspiration
from Galois theory, but we will avoid confusion with the completion F̄µ.

Proof of equivalence of definitions of almost surely equal events. If 1A = 1B a.s., then

E(|1A − 1B|) = E(1A\B) + E(1B\A) = P(A \B) + P(B \A) = P(A△B) = 0.

Conversely, if |1A − 1B| > 0 with some positive probability, then P(A△B) = E(|1A − 1B|) > 0.

Proposition 1 (The invariant σ-algebra).

The collection of invariant events I forms a σ-algebra.

Proof. To write it out, I =
{
A ∈ F : φ−1A = A a.s.

}
. Note that φ is measure-preserving: P(φ−1A) = P(A).

1. Nonempty. φ−1(∅) = ∅.

2. Closure under complements. If φ−1A = A a.s., then 1− 1φ−1A = 1− 1A a.s., or (φ−1A)c = Ac a.s.
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3. Closure under countable unions. If A1, A2, . . . ∈ I, let N1,N2, . . . be the corresponding null sets on which
1φ−1An

≠ 1An . The countable union of null sets is null, so

φ−1
∞⋃
n=1

An =

∞⋃
n=1

φ−1An =

∞⋃
n=1

An

almost surely (outside of the null set
⋃∞

n=1Nn).

Definition 3 (Ergodic transformation).

A measure-preserving transformation φ on (Ω,F ,P) is ergodic if I is trivial, i.e. P(A) = 0 or 1 for every A ∈ I,
or equivalently if I is independent of itself (or F).

If φ is not ergodic, then the space Ω can be partitioned into two events A and Ac, each with positive measure, such
that φ(A) = A and φ(Ac) = Ac: that is, φ is not irreducible.

Let us check the ergodicity of our previous examples, using the fact that every measure-preserving transformation is
in some sense the shift operator on the sequence space.

• If Ω = RN and φ is the shift operator, for A ∈ I, {ω : ω ∈ A} = {ω : φnω ∈ A} ∈ σ(Xn,Xn+1, . . .). Thus

A ∈
∞⋂
n=0

σ(Xn,Xn+1, . . .) = T ,

the tail σ-algebra. If (Xn)n∈N are i.i.d., by Kolmogorov’s 0-1 law, T is trivial, so I ⊆ T is trivial as well, i.e.
the sequence is ergodic. (That is, when we equip the corresponding measure on Ω = RN, φ is ergodic.)

• Suppose that the state space S is countable and the stationary distribution π is strictly positive. Then every
state is positive recurrent, and S has a partition into closed irreducible classes Ri. If X0 ∈ Ri, then Xn ∈ Ri

for all n ∈ N a.s., so {ω : X0(ω) ∈ Ri} ∈ I. Thus if this chain is reducible, it is not ergodic. (By assumption,
it must start with positive mass in each Ri.)

Conversely, let θ be the shift operator, and observe that 1A ◦ θn = 1A for A ∈ I. Let Fn = σ(X0, . . . ,Xn).
By the shift invariance of 1A and the Markov property, the conditional stationary probability of A is

Eπ(1A | Fn) = Eπ(1A ◦ θn | Fn) = EXn
(1A).

By Lévy’s 0-1 law, the left-hand side converges to 1A as n → ∞. Now denote h(x) := Ex(1A). If the chain
is irreducible and (positive) recurrent, then for any y ∈ S, the right-hand side h(Xn) = h(y) infinitely often
(as Xn revisits y i.o.). As h(Xn) converges to an indicator, we must actually have h ≡ 0 or h ≡ 1 on S, and
Eπ(1A) = Pπ(A) = 0 or 1. Thus irreducibility and positive recurrence imply ergodicity.

(I amend my previous remarks, or acknowledge that Durrett may be using a different convention.) This example
also shows that I and T may differ. I is trivial above, but if the chain is periodic with period d > 1, then
T = σ({X0 ∈ Sr} : 0 ≤ r < d), where S0, . . . , Sd−1 is the cyclic decomposition of S.

• The deterministic or almost-sure rotation by θ is not ergodic if θ ∈ Q. Let θ = m/n in reduced form, m < n

positive integers. Then if B ⊆ [0, 1/n) is a Borel subset, the collection of its rotations A =
⋃n−1

k=0

(
B + k

n

)
is

an invariant set.
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Conversely, if θ is irrational, then φ is ergodic. One proof borrows from Fourier analysis: if f : [0, 1) → R is a
measurable function with

∫
[0,1)

f2 dx < ∞, then f(x) =
∑

k∈Z cke
2πikx, with equality in the sense of

M∑
k=−M

cke
2πikx → f(x) in L2([0, 1)) as M → ∞.

Moreover, this representation is unique: the coefficients are determined by ck =
∫
[0,1)

f(x)e−2πikx dx. Thus

f(φx) =
∑
k∈Z

(cke
2πikθ)e2πikx,

where e2πiy = e2πi(y mod 1). By uniqueness, f ◦φ = f iff ck(e2πikθ−1) = 0. But as θ is irrational, this implies
ck = 0 for k nonzero, and f : [0, 1) → R is constant. If f = 1A for A ∈ I, then A = ∅ or [0, 1) almost surely.

Let us also consider a more direct proof of ergodicity when θ is irrational.

i. The “wrapped-around” lattice xn = nθ mod 1 is dense in [0, 1). By irrationality, all of the xn are distinct
(if xm = xn, then (n−m)θ ∈ Z), so for any N < ∞, there exist m,n ≤ N such that |xn − xm| ≤ 1/N .
Now let (a, b) be any “circular” open interval in [0, 1) with length ℓ > 0, and take N such that 1/N < ℓ.
Then there exist xm, xn, xn+(n−m), xn+2(n−m), . . ., spaced out with distance ≤ 1/N . It is impossible to
have a contiguous interval of length ℓ lie on [0, 1) without intersecting any of these points, which shows
that {xn} is dense in [0, 1).

ii. For any Borel set B ⊆ [0, 1) with µ(B) > 0 and for any δ > 0, there exists an interval I = [a, b) such
that µ(B ∩ I) > (1− δ)µ(I). By lemma A.2.1, we have A =

⊔n
i=1[ai, bi) such that µ(B△A) < δµ(A).

Suppose that µ(Ii)− µ(Ii ∩B) ≥ δµ(Ii) for all 1 ≤ i ≤ n. But then

µ(B △A) ≥ µ(A \B) =

n∑
i=1

µ(Ii \B) =

n∑
i=1

(µ(Ii)− µ(Ii ∩B)) ≥ δ

n∑
i=1

µ(Ii) = δµ(A).

So there exists some Ii = [ai, bi) satisfying the claim, and take I = Ii.

iii. For A ∈ I with positive measure, by part ii (Lebesgue’s density theorem in [0, 1)), we find that almost
every a ∈ A has density 1. No point in Ac has density 1 for Ac by part i, as any interval about x contains
some nθ-rotation of (a− ε, a+ ε) for a ∈ A by the denseness of nθ mod 1. Therefore µ(Ac) = 0, i.e.
P(A) = 1, and we are done.

Now, a few more results about invariant events and random variables:

Proposition 2 (Invariant random variables).

X is I-measurable iff X is invariant, i.e. X ◦ φ = X almost surely.

Proof. Recall that every I-measurable X is the limit of simple I-measurable functions. It suffices to follow a standard
monotone class argument:

i. If X = 1A for A ∈ I, then P(φ−1(A)△A) = E(|1A ◦ φ− 1A|) = 0 shows that X ◦ φ = X a.s.

ii. If X is simple, then it is clear by linearity that X ◦ φ = X a.s.

iii. If X = limn→∞Xn for X1,X2, . . . simple, let Nn be the null set on which Xn ◦ φ ≠ Xn for each n. Then
outside of the null set

⋃∞
n=1Nn, i.e. almost surely, we see that X ◦ φ = X.
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Conversely, suppose that X ◦ φ = X a.s., outside of the null set N . Then for any A ∈ σ(X), where A = X−1(B),

P(φ−1(A)△A) = P((X ◦ φ)−1(B)△X−1(B)) ≤ P(N) = 0.

Thus σ(X) ⊆ I, i.e. X is I-measurable.

Proposition 3 (Almost and strict invariance).

An event A is strictly invariant if A = φ−1(A) and almost invariant if P(A△ φ−1(A)) = 0.

a. If A is any set and B =
⋃∞

n=0 φ
−n(A), then φ−1(B) ⊆ B.

b. If B is any set with φ−1(B) ⊆ B and C =
⋂∞

n=0 φ
−n(B), then φ−1(C) = C.

c. A is almost invariant iff there is C strictly invariant such that P(A△C) = 0.

Proof. As we consider events up to almost sure equality, we simply call almost invariant sets invariant.

a. φ−1(
⋃∞

n=0 φ
−n(A)) =

⋃∞
n=0 φ

−1(φ−n(A)) =
⋃∞

n=1 φ
−n(A) ⊆

⋃∞
n=0 φ

−n(A).

b. φ−1(
⋂∞

n=0 φ
−n(B)) =

⋂∞
n=1 φ

−n(B) ⊇
⋂∞

n=0 φ
−n(B), and as B = φ0(B) ⊇ φ−1(B), we have equality.

c. If A has C = φ−1(C) such that P(A△C) = 0, then

P(φ−1(A)△C) = P(φ−1(A)△ φ−1(C)) = P(φ−1(A△C)) = P(A△C) = 0.

That is, 1φ−1(A) = 1C = 1A a.s. Conversely, let A be almost invariant and define C = lim supn→∞ φ−n(A)
as above. Then A \C = lim inf(A \ φ−n(A)) and C \A = lim sup(φ−n(A) \A) both have measure zero:

P(C \A) ≤ P
(
lim sup
n→∞

(φ−nA△A)

)
≤

∞∑
n=1

P(φ−nA△A) ≤
∞∑
n=1

n∑
k=1

P(φ−kA△ φ−(k−1)A) = 0.

If the trajectory of the average particle is “space-filling,” then we might expect the time average, the average of the
states sampled by the particle at times 0, 1, . . . , n, to the space average, the true expectation taken over all the
states. This idea generalizes the SLLN, taking as stationary sequence a collection of i.i.d. integrable random variables.
In this vein, the following result is also known as the pointwise or individual ergodic theorem:

Theorem 1 (Birkhoff’s ergodic theorem).

For any X ∈ L1(Ω,F ,P,R), φ measure-preserving, and Xn(ω) = X(φnω),

1

n

n−1∑
k=0

Xk(ω) → E(X | I) almost surely and in L1.

As a consequence, when the sequence is ergodic, I is trivial, and E(X | I) = E(X). In particular, if X = 1A, then
the asymptotic fraction of time in which φn ∈ A is the “spatial” average P(A).
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We will need a slightly odd integration inequality:

Lemma 1 (Maximal ergodic lemma).

Let Xi(ω) = X(φiω), let Sn :=
∑n−1

i=0 Xi, S0 = 0, and let Mn = max0≤k≤n Sk. Then E(X | Mn > 0) ≥ 0.

Proof. Note that Mn(φω) ≥ Sk(φω) for k ≤ n, so X(ω) +Mn(φω) ≥ X(ω) + Sk(φω) = Sk+1(ω). Rearranging,

X(ω) ≥ Sk+1(ω)−Mn(φω) for k = 1, . . . , n.

The above holds for k = 0 as well, since S1(ω) = X(ω) ≥ S1(ω)−Mn(φω) by Mn ≥ 0. Taking the maximum of
the right-hand side over k = 0, . . . , n− 1, by the monotonicity of expectation,

E(X | Mn > 0) ≥
∫
{Mn>0}

max
1≤k≤n

Sk(ω)−Mn(φω) dP

=

∫
{Mn>0}

Mn(ω)−Mn(φω) dP

≥
∫
Ω

Mn(ω)−Mn(φω) dP

= E(Mn − (Mn ◦ φ)).

The second inequality comes from Mn(ω)−Mn(φω) = 0−Mn(φω) ≤ 0 on the event {Mn > 0}c = {Mn = 0}.
Then, as φ is measure-preserving, E(Mn − (Mn ◦ φ)) = 0.

Proof of Theorem 1. The I-measurable E(X | I) is φ-invariant by Proposition 2, so taking X ′ = X − E(X | I),
we may assume E(X | I) = 0 without loss of generality. Let ε > 0, let X̄ = lim supn→∞ Sn/n, and let

∆ :=
{
ω : X̄(ω) > ε

}
.

We wish to show that P(∆) = 0, which gives lim supn→∞ Sn/n ≤ 0 a.s., and by symmetry we will have Sn/n → 0
a.s. Matching the notation of Lemma 1, we write

X∗(ω) := (X(ω)− ε) · 1∆(ω)

S∗
n(ω) :=

n−1∑
i=0

X∗(φi−1ω)

M∗
n(ω) := max

0≤k≤n
S∗
k(ω) = max {0, S∗

1(ω), . . . , S
∗
n(ω)}

An := {M∗
n > 0}

A :=

∞⋃
n=1

An =

{
sup
n≥1

S∗
n

n
> 0

}
.

Now, invoking Lemma 1, E(X∗;An) ≥ 0. By dominated convergence, where E(|X∗|) ≤ E(|X|) + ε < ∞, we see
that E(X∗;A) ≥ 0 as well. Observe that as X∗ = X − ε on ∆ per definition,

A =

{
sup
n≥1

Sn

n
> ε

}
∩∆ =

{
lim sup
n→∞

Sn

n
> ε

}
= ∆.
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Moreover, ∆ ∈ I as X̄(φω) = X̄(ω). Thus

E(X∗;A) = E(X∗;∆) = E(X − ε;∆) = E(E(X | I);∆)− εP(∆) = −εP(∆) ≥ 0,

where E(X | I) = 0, which shows that P(∆) = 0. Now, we perform a routine upgrade from a.s. to L1 convergence
using truncation. Let X ′

M = X1|X|≤M and YM = X −X ′
M . We know that

1

n

n−1∑
k=0

X ′
M(φkω) → E(X ′

M | I) a.s.

by the proof above, and we have L1 convergence by the bounded convergence theorem. For YM , observe that by the
triangle inequality or Jensen’s inequality,

E

∣∣∣∣∣ 1n
n−1∑
k=0

YM(φkω)

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

E
∣∣YM(φkω)

∣∣ = E |YM |

and E |E(YM | I)| ≤ EE(|YM | | I) = E |YM | by the tower property. Putting these two bounds together,

E

∣∣∣∣∣ 1n
n−1∑
k=0

YM(φkω)− E(YM | I)

∣∣∣∣∣ ≤ 2E |YM | .

Now, given the L1 convergence for X ′
M shown above, we find that

lim sup
n→∞

E

∣∣∣∣∣ 1n
n−1∑
k=0

X(φkω)− E(X | I)

∣∣∣∣∣ ≤ 2E |YM | ,

which tends to 0 as M → ∞ by dominated convergence, and we are done.

Note that Birkhoff’s ergodic theorem implies the strong law of large numbers. The L1 convergence follows without
needing Theorem 1: decomposing X = X+ −X−, note that

1

n

n−1∑
k=0

X+
k → X+ a.s. and E

∣∣∣∣∣ 1n
n−1∑
k=0

X+
k

∣∣∣∣∣ = E
∣∣X+

∣∣ .
By Vitali’s convergence theorem (4.6.3 in Durrett), we find 1

n

∑n−1
k=0 X

+
k → X+ in L1, and likewise for the negative

part. By the triangle inequality,

E

∣∣∣∣∣ 1n
n−1∑
k=0

Xk −X

∣∣∣∣∣ ≤ E

∣∣∣∣∣ 1n
n−1∑
k=0

X+
k −X+

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
n−1∑
k=0

X−
k −X−

∣∣∣∣∣ → 0.

We have a few more examples of applications of the ergodic theorem:

Proposition 4 (Markov reward process).

Let (Xn)n∈N be an irreducible Markov chain on a countable state space S with stationary distribution π, and let
f : S → R be a so-called reward function with

Eπ(|f |) =
∑
x∈S

|f(x)|π(x) < ∞.

By ergodicity, I is trivial, so applying Theorem 1 to f(X0), we find that the “average reward” collected by a
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particle walking on the Markov chain converges to

1

n

n−1∑
k=0

f(Xk) → Eπ(f) almost surely and in L1.

Proposition 5 (Weyl’s equidistribution theorem).

For the example of rotation φ(ω) = (ω+ θ) mod 1 by irrational θ, let X = 1A, A ⊆ [0, 1) Borel. By Theorem 1,

1

n

n−1∑
k=0

1φkω∈A → P(A) a.s.

The case of ω = 0 is usually known as Weyl’s equidistribution theorem.

To be continued.
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