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In this note, we will continue on our quest to further quantify and make precise the strong law of large numbers from
2023-01-02. Recall the strategy of our previous proof:

• We reduced to the case of Xn nonnegative without loss of generality.

• Then, we defined the truncated sequence X̄i = Xi · 1Xi≤i. The only property we were given is the finiteness
condition E(X1) < ∞, so we used the Borel–Cantelli lemma and the tail-sum approximation to show that the
limit of the sample mean S̄n/n is unaffected by truncation almost surely. Here is finiteness in action:

∞∑
i=1

P(Xi ≠ X̄i) =

∞∑
i=1

P(Xi > i) ≈ E(X1) < ∞.

• With bounded random variables, we now gain access to higher-order Markov’s inequalities, such as Chebyshev’s
inequality. By also choosing a sufficiently fast subsequence (X̄kn

)n≥1, we get even more control over the rate
of decay of the Chebyshev bound. Now, invoking the Borel–Cantelli lemma, Chebyshev’s inequality, and the
tail-sum approximation once more, we convert the question of almost sure convergence into one of finiteness:

∞∑
n=1

P
(∣∣∣∣ S̄kn

− E(S̄kn
)

kn

∣∣∣∣ > ε

)
≲

∞∑
n=1

[
1

k2n

kn∑
i=1

E(X2
kn
)

]
≈

∞∑
j=1

j P(X1 > j)
∑

n:kn≥j

1

kn

 ≈ E(X1).

• Finally, we simply leverage monotonicity to upgrade to convergence along the full sequence.

Almost sure convergence is rather unique in that it is really pointwise convergence in its essence: as such, we can
take inspiration from and make use of quantitative results on the convergence of sequences of real numbers for the
purposes of almost sure convergence.

For example, while the harmonic series (p = 1) is the “boundary” between convergence and divergence for p-series∑∞
n=1 n

−p, it is not the most precise boundary. A finer result states that

∞∑
n=1

1

n(logn)c

converges for c > 1 and diverges for c ≤ 1, and thus
∑∞

n=1(n logn)−1 = ∞ is a “better” boundary.

Now, we know that Sn/n → 0 almost surely, and Sn/
√
n tends to an O(1) tight random variable. We wish to go

further: indeed, we can show that Sn/n
0.5+ε → 0 a.s. for ε > 0. First, we will need a few lemmas.
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Lemma 1 (Kolmogorov’s maximal inequalilty).

Let X1,X2, . . . be independent and zero-mean. Then

P
(

sup
1≤k≤n

|Sk| > x

)
≤ E(S2

n)

x2
.

This is a stronger result than Chebyshev’s inequality, which only bounds the probability of deviation for the “endpoint”
Sn/n, not the maximum of the “process” Sk/k over all 1 ≤ k ≤ n. As a side note, Lemma 1 is a special case of the
optional stopping theorem for submartingales.

Proof. Let A∗ be the event of interest. A useful strategy also used in the proof of Ottaviani’s inequality : we observe
that if sup1≤k≤n |Sk| > x, then there must be an index k at which |Sk| first exceeds x. Thus, let us partition A∗

into the events Ak = {|Sk| > x and |Sj| ≤ x for all j < k}. Now,

E(S2
n) ≥ E(S2

n · 1A∗) =

n∑
k=1

E(S2
n · 1Ak

)

= E(S2
k · 1Ak

) + 2E(Sk(Sn − Sk) · 1Ak
) + E((Sn − Sk)

2 · 1Ak
).

Note that Ak is σ(X1, . . . ,Xk)-measurable, as is Sk, and σ(X1, . . . ,Xk) is independent of σ(Xk+1, . . . ,Xn). Thus
the cross term factorizes as E(Sk1Ak

) ·E(Sn−Sk) and vanishes by zero-meanness. As (Sn−Sk)
2 ≥ 0, and S2

k > x2

on the event Ak by its definition,

≥ E(S2
k · 1Ak

)

≥ x2 P(Ak).

Lemma 2 (Summability of variances implies almost-sure summability of sequence).

Let X1,X2, . . . be independent and zero-mean. If
∑∞

i=1 var(Xi) < ∞, then
∑∞

i=1Xi < ∞ almost surely.

Proof. When we want to prove almost sure convergence without necessarily knowing what the limit explicitly is, a
common strategy is to leverage the completeness of the reals, i.e. show that the sequence is almost surely Cauchy.
(The same strategy works for Lp limits, as Lp space is complete.) Let ε > 0. We want N such that

|Sn − SN | < ε almost surely for all n ≥ N.

Writing the Cauchyness condition in terms of only one variable allows us to invoke the Chebyshev-like Kolmogorov’s
maximal inequality and bound the probability of the complement:

P
(

sup
N≤m≤n

|Sn − Sm| ≥ ε

)
≤

∞∑
i=N

var(Xi)

ε2
.

The event on the left-hand side increases as n → ∞, but the upper bound, which does not depend on n, still holds.
Moreover, as N → ∞, the right-hand side tends to 0 as 1/ε2 times the tail of a convergent series, while the left-hand
side tends to the probability that Sn is not a.s. Cauchy. Thus Sn converges almost surely, and we are done.
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Alternatively, one can be a bit more rigorous in using the monotone continuity of probability measures and formulating
the event of being almost surely Cauchy in terms of countable unions and intersections, but this is besides the point.

Lemma 3 (Kronecker’s lemma).

Let (an)n≥1 be a sequence of real numbers, and suppose bn ↑ ∞. If
∑

i(ai/bi) < ∞, then (
∑n

k=1 ak)/bn → 0.

This is a statement about real numbers, and its proof requires no probability whatsoever.

Proof. Let γk :=
∑k

i=1(ai/bi), and let γ := limk→∞ γk < ∞. We observe that the difference of consecutive values
γi − γi−1 isolates the term ai/bi. Let us write

n∑
k=1

ak =

n∑
k=1

(γk − γk−1)bk.

Using summation by parts, the discrete analogue of integration by parts, or Abel’s lemma, the above is equal to

bnγn −
n−1∑
k=1

(bk+1 − bk)γk,

where γ0 = 0. Alternatively, simply expand the sum and group by γk instead of bk. Now,

1

bn

n∑
k=1

ak = γn −
n−1∑
k=1

(bk+1 − bk)

bn
γk.

For ε > 0, take any N such that k ≥ N implies |γk − γ| < ε. Then for any n ≥ N , the above is sandwiched by

γn −
n−1∑
k=N

bk+1 − bk
bn

(γ + ε) ≤ · · · ≤ γn −
n−1∑
k=N

bk+1 − bk
bn

(γ − ε).

Note that the first finitely many terms in the sum do not matter in the limit: 1
bn

∑N−1
k=1 (bk+1 − bk)γk → 0 because

bn ↑ ∞ and N is fixed. From here, by telescoping cancellation, the bounds become

γn − bn − bN
bn

(γ + ε) ≤ · · · ≤ γn − bn − bN
bn

(γ − ε).

Finally, passing to the limit as n → ∞, the above simplifies to

−ε ≤ lim
n→∞

1

bn

n∑
k=1

ak ≤ ε.

As ε > 0 is arbitrary, we have shown that limn→∞(
∑n

k=1 ak)/bn = 0, as desired.

And, finally, the main event.

Theorem 1 (Strong law of large numbers).

Let X1,X2, . . . be independent and identically distributed zero-mean random variables, with E(|X1|) < ∞. Then
Sn/n → 0 almost surely.
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Proof. Even with a new strategy, do not forget our old friends, the Borel–Cantelli lemma and the tail-sum approxi-
mation. The theme of quantification still runs through us.

i. By Lemma 3, letting an = Xn(ω) and bn = n ↑ ∞, it suffices to show that
∑∞

k=1Xk/k < ∞ almost surely.

ii. By Lemma 2, it suffices to show that
∑∞

k=1 var(Xk)/k
2 < ∞. However, the Xk do not necessarily have finite

second moment. As such, to regain higher-order moments, we turn to the usual method of truncation.

iii. Let X̄k = Xk · 1|Xk|≤k, and let Yk = X̄k − E(X̄k). By the same argument as before,

∞∑
k=1

var(X̄k)

k2
< ∞ Lemma 2

======⇒
∞∑
k=1

Yk

k
< ∞ a.s.

Lemma 3
======⇒

n∑
k=1

X̄k

n
→ 0 a.s.

Now, a familiar argument proves that truncation has no effect in the limit: S̄n/n = Sn/n as n → ∞ almost
surely because Xk ≠ X̄k only finitely often. Simply combine Borel–Cantelli and

∞∑
k=1

P(Xk ≠ X̄k) =

∞∑
k=1

P(Xk > k) ≈ E(X1) < ∞.

We also needed the observation that E(X̄k) → 0 by dominated convergence, taking X̄k
d
= X11|X1|≤k ≤ X1.

This shows that the running average
∑n

k=1 E(X̄k)/n → 0, which we combine with the almost sure convergence
of
∑n

k=1 Yk/n → 0 to get the conclusion of S̄n/n → 0 above.

iv. It suffices to show that
∑∞

k=1 var(X̄k)/k
2 < ∞. Using Tonelli’s theorem to exchange the summations, this is

upper bounded by

∞∑
k=1

E(|Xk|2 · 1|Xk|≤k)

k2
≈

∞∑
k=1

 1

k2

k∑
j=1

j P(|X1| > j)

 ≈
∞∑
j=1

j P(|X1| > j)
∑
k:k>j

1

k2

 .

Note that
∑

k:k>j 1/k
2 ≈ 1/j by Riemann approximation, so this bound is

≈
∞∑
j=1

P(|X1| > j) ≈ E(|X1|) < ∞.

As we see, stronger quantitative control is given by the choice of bn ↑ ∞. How far can we push this technique? Per our
remarks in the beginning,

∑∞
i=1 i

−1(log i)−(1+ε) < ∞ for ε > 0. If E(X2
1 ) < ∞, then letting bn = k1/2(log k)1/2+ε,

we see that the finiteness of

∞∑
k=1

var(Xk)

(k1/2(log k)1/2+ε)2
= E(X2

1 )

( ∞∑
k=2

1

k(log k)1+2ε

)
< ∞

shows that Sn/bn → 0 almost surely by the same argument as above. Sn/
√
n(logn)c → 0 for c > 1 is the limit of

what we can reach for now. A further destination, for another day, is the law of the iterated logarithm.

This note was largely adapted from Professor Shirshendu Ganguly’s fall 2022 offering of Math C218A / Stat C205A
at UC Berkeley.
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