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As promised, we will continue the journey started in 2023-01-02, 2023-01-03, and 2023-01-18.

The primary focus of this note will be on sums of i.i.d. Rademacher random variables X1,X2, . . ., which are ±1 with
probability 1

2 each. While more general i.i.d. sums are featured in the study of Poisson point processes and renewal
theory, the sums of i.i.d. Rademachers Sn =

∑n
i=1Xi, where S0 = 0, form a classical example of a random process:

the symmetric or simple random walk on the integers Z. Our methods will also apply to the asymmetric case.

(Recall that Rademachers are convenient to work with because they are standardized, i.e. zero-mean unit-variance,
random variables. We often want to impose this condition in general by translation and scaling, but for Xi Rademacher,
it’s already a given.)

From our previous discussions, the Strong Law of Large Numbers states that Sn ∈ o(n1/2(logn)1/2+ε) almost surely.
The Central Limit Theorem states that Sn ∈ O(n1/2) almost surely, or more specifically Sn/n

1/2 converges to the
standard normal N (0, 1) in distribution. But, despite how close they may seem, there is a vast, untouched borderland
of complexity classes between n1/2 and n1/2(logn)1/2+ε, and perhaps the abrupt transition from 0 to the a.s. finite,
but unbounded Z ∼ N (0, 1) may seem a bit jarring.

Can we be more precise in our understanding of the eventual behavior of the simple random walk Sn? Of course, Sn

is a random variable that can fluctuate probabilistically, and we already know that Sn is “typically” ±
√
n. What we

really want is a theorem situated between the SLLN and the CLT — a tight asymptotic envelope.

Theorem 1 (Law of the iterated logarithm, or LIL).

Let X1,X2, . . . be i.i.d. Rademacher random variables, and let Sn =
∑n

i=1Xi. Then

P
(
lim sup
n→∞

Sn√
2n log logn

= 1

)
= 1.

(For convenience, we will write f(n) :=
√
2n log logn throughout.)

By symmetry, lim infn→∞ Sn/
√
2n log logn = −1 almost surely as well. Theorem 1 is really two almost-sure bounds

packaged into one:

1. The upper bound lim supn→∞ Sn/f(n) ≤ 1. For the limit supremum of a sequence to be bounded above by 1
means that the sequence eventually lies below 1, or, in other words, the sequence exceeds 1 only finitely often.
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2. The lower bound lim supn→∞ Sn/f(n) ≥ 1. The sequence Sn/f(n) exceeds 1 infinitely often; combined with
the previous upper bound, this means Sn/f(n) actually hits or attains 1 infinitely often!

In other words, f(n) is truly an envelope for Sn: the “trajectory” of Sn falls within [−f(n), f(n)], or |Sn| ≤ f(n),
eventually with probability 1. Moreover, this envelope is tight: Sn is eventually within the bounds, but also reaches
and touches the ceiling and floor ±f(n) infinitely often.

This is a remarkable result, but it may also seem entirely arbitrary. The namesake of Theorem 1 doubles as its oddest
feature, the term (log logn)1/2, especially since Sn itself admits a very simple formulation. How do we reason about
it? Well, for a start, we can convince ourselves that the iterated logarithm is no more odd than n1/2. This will be a
question we aim to answer through this note: where does the iterated logarithm come from?

Now, as we might expect, to make finer distinctions rather than broad strokes in determining asymptotic rate will
require more technical tools and prowess. These involve a different kind of intuition, the intuition for technique in
proof, reducing complexity, and transforming objectives.

First, let us recall our weapon of choice for tackling statements of the form “eventually almost surely.”

Lemma 1 (Borel–Cantelli lemma).

Let A1, A2, . . . be any sequence of events. If
∑∞

n=1 P(An) < ∞, then P(An i.o.) = 0.

We also have a partial converse to Lemma 1 that often proves to be useful when we have independence.

Lemma 2 (Second Borel–Cantelli lemma).

Let A1, A2, . . . be any sequence of mutually independent events. If
∑∞

n=1 P(An) = ∞, then P(An i.o.) = 1.

Proof. We wish to leverage the monotone continuity of probability and the independence of (Ak)
∞
k=1, so let us find

1− P(An i.o.) = P

 ∞⋃
n=1

⋂
k≥n

Ac
k

 = lim
n→∞

P

⋂
k≥n

Ac
k

 = lim
n→∞

∏
k≥n

(1− P(Ak)).

Now,
∏∞

k=n(1− xk) = 0 iff
∑∞

k=n xk = ∞, which is true for xk = P(Ak) by hypothesis. Thus the right-hand side
tends to 0 as n → ∞, and we are done.

In particular, note that the conclusion of the first Borel–Cantelli lemma has the form “finitely often a.s.” or “eventually
a.s.” However, the lower bound is a statement of “infinitely often a.s.,” which fails to fit the form of the first Borel–
Cantelli lemma. This is where Lemma 2 will be applied instead.

Considering ingredients of our previous proofs, we will not need the tail-sum approximation to exploit given finiteness
conditions, as Rademachers are already bounded. However, a concentration inequality analogous to Chebyshev’s will
turn out useful in converting summations of probabilities into more numerical series.

Lemma 3 (Chernoff bound for i.i.d. sum of Rademachers).

For any positive integer a, we have the bound P(Sn ≥ a) ≤ e−a2/(2n).
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Proof. Let t > 0. As x 7→ etx is a monotonic function taking nonnegative values, by Markov’s inequality, we obtain
the usual Chernoff bound of

P(Sn ≥ a) = P(etSn ≥ eta) ≤ E(etSn)

eta
=

E(etX1)n

eta
.

Note that E(etSn), the moment-generating function of Sn, equals
∏n

i=1 E(etXi) by independence. In particular, by
comparing the coefficients in the Taylor expansions,

E(etX1) =
et + e−t

2
≤ et

2/2.

Thus, taking t = a/n, the Chernoff bound becomes

P(Sn ≥ a) ≤ ent
2/2

eta
= e−a2/(2n).

Let us also consider the maximal function or process Mn := max0≤k≤n Sk. A result in our toolkit from 2023-01-18
is Kolmogorov’s maximal inequality, which bounds the tail probability of Mn in terms of the Chebyshev bound for
Sn. Generally, maximal inequalities are valuable because they save an undesirable extra factor of n due to a naïve
application of the union bound. To say something about the full history or trajectory, using only the current sample
or value — that’s quite a powerful idea.

Lemma 4 (Reflection principle).

For any positive integer a, we have the equality P(Mn ≥ a) = P(Sn = a) + 2P(Sn > a) ≤ 2P(Sn ≥ a).

Proof. By the law of total probability,

P(Mn ≥ a) =

a−1∑
k=−n

P(Mn ≥ a, Sn = k) +

n∑
k=a

P(Mn ≥ a, Sn = k).

By reflectional symmetry, the event {Mn ≥ a, Sn = k} has the same probability as {Mn ≥ a, Sn = a− (k − a)}:

=

a−1∑
k=−n

P(Sn = 2a− k) +

n∑
k=a

P(Sn = k)

= P(Sn ≥ a+ 1) + P(Sn ≥ a).

There are different variations of Lemma 4 with constant factors of 3, 4, 4
3 , etc., but when you see its application, it

becomes clear that we only require the finiteness of the factor. For example, an alternative to Lemma 4 is

Lemma 5 (Etemadi’s inequality).

Let a ≥ 0. Then P(max0≤k≤n |Sk| ≥ 3a) ≤ 3P(|Sn| ≥ a).
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Proof. We can assume that Sn is any i.i.d. sum. We follow the same strategy as in the proof of Ottaviani’s inequality:
partition the event of interest A∗ into Ak := {|Sk| ≥ 3a, max1≤j≤k |Sj| < 3a}. Then

P(A∗) =

n∑
k=1

P(Ak) ≤ P(|Sn| ≥ a) +

n∑
k=1

P(Ak ∩ |Sn| < a).

Ignore the P(|Sn| ≥ a) term that stays out front. We observe that Ak ∩ {|Sn| < a} ⊆ Ak ∩ {|Sn − Sk| > 2a}, and
note that |Sn − Sk| is σ(Xk+1, . . . ,Xn)-measurable, independent of Ak ∈ σ(X1, . . . ,Xk). Thus the above is

· · · ≤
n∑

k=1

(P(Ak) · P(|Sn − Sk| > 2x))

≤ P(A∗) · max
1≤k≤n

P(|Sn − Sk| > 2x).

By contrapositive, {|Sn − Sk| > 2x} ⊆ {|Sn| > x} ∪ {|Sk| > x}. Adding back in the P(|Sn| ≥ a) term, we have

· · · ≤ P(|Sn| ≥ a) + 2P(A∗) max
1≤k≤n

P(|Sk| > a)

≤ 3 max
1≤k≤n

P(|Sk| ≥ a).

Returning to our special case, suppose 0 ≪ a < n/(1+ 21/2). We claim that P(|Sn| ≥ a) = max1≤k≤n P(|Sk| ≥ a),
which gives the result above. We want

P(|Sk−1| ≥ a) = P(|Sk| ≥ a+ 1) +
1

2
P(|Sk| = a− 1) ≤ P(|Sk| ≥ a),

which holds iff the following inequalities are true:

P(|Sk| = a− 1) ≤ 2P(|Sk| = a+ 1)

2 · k!

(a− 1)!(k − a+ 1)!
2−k ≤ 4 · k!

(a+ 1)!(k − a− 1)!
2−k

(a+ 1)a ≤ 2(k − a+ 1)(k − a).

I may have made a mistake above in terms of only considering 2(n− a+ 1)(n− a), but no matter: if the maximum
tail probability is attained by |Skn

|, a ≪ kn ≤ n, this merely gives a weaker upper bound in the main proof. In any
case, I only mention this lemma as a possible alternative to Lemma 4, so it’s somewhat fine to fail here.

The lemmas above are enough to prove the upper bound result in Theorem 1. But, as we noted with the second
Borel–Cantelli lemma, the lower bound result requires a different approach and thus a different set of lemmas.

Lemma 6 (Local Central Limit Theorem, or local CLT).

P(Sn = k) ∈ Θ(e−k2/(2n)/
√
πn).

Proof. See the proof of the De Moivre–Laplace Central Limit Theorem in 2023-01-03.

In probability, lower bounds are harder to come by. You may have noticed that most of the common concentration
inequalities — Markov’s, Chebyshev’s, Chernoff, Hoeffding, Azuma’s, etc. — are all upper bounds. But, we need the
divergence of a summation of tail probabilities for the second Borel–Cantelli lemma, which means we need a lower
bound. Here, we can leverage the discreteness of the Sn and the precise local asymptotic analysis for P(Sn = k) in
order to approximate P(Sn ≥ k).
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Lemma 7 (Lower bound on tail probability of sum).

Let k > n1/2. Then P(Sn ≥ k) ≥ e−k2/(2n)(n1/2/k) up to some positive constant multiplicative factor.

Proof. Throughout, let c > 0 denote the constant factor (which we do not care about) at each step. First,

P(Sn ≥ k) ≥ P
(
k ≤ Sn ≤ k +

n

k

)
≥ cn−1/2

k+(n/k)∑
m=k

e−m2/(2n)

per Lemma 6. For m in this range, we have that

exp

(
−m2

2n

)
≥ exp

(
−
(k + n

k )
2

2n

)
= exp

(
− k2

2n
− 1− n

2k2

)
≥ c exp

(
− k2

2n

)
,

where k2 > n by hypothesis. Observe that placing an upper bound of k + n
k on m is what allowed us to write this

inequality. Now, as there are n
k values of m in the sum,

P(Sn ≥ k) ≥ n

k
· cn−1/2e−k2/(2n).

Verily, with every hardship, there is relief. To show that a limit supremum has a lower bound, it suffices to show that
a subsequence is eventually greater than said lower bound. We don’t need to upgrade to the full sequence and don’t
need to consider maximal inequalities; any “infinitely often” subsequence is all we need.

Finally, here we go.

Proof of upper bound. Let ε > 0. It suffices to show that lim supn→∞ Sn/f(n) ≤ 1 + ε a.s.

(More formally, we can take ε → 0+ along ( 1k )k≥1 such that the corresponding events form a decreasing sequence,
then invoke the monotone continuity of probability. We will not worry about this familiar argument.)

i. Let α > 1, and consider the exponential subsequence (Mαk)k≥1. We write αk = ⌈αk⌉ out of convenience. In
order to invoke the first Borel–Cantelli lemma, consider the following probability:

P
(

max
0≤n≤αk

Sn ≥ (1 + ε)f(αk)

)
≤ 2P

(
Sαk ≥ (1 + ε)f(αk)

)
,

which we bounded by the reflection principle.

ii. Now, by the Chernoff bound for Sn, the above is at most

· · · ≤ 2 exp

(
−(1 + ε)2f(αk)2

2αk

)
= 2exp

(
−(1 + ε)2 log logαk

)
= 2(k logα)−(1+ε)2 .

Note that −(1+) log logαk = log (k logα)−(1+) produced the summable term ck−(1+) after exponentiation.

iii. This upper bound is summable in k. Thus, by the Borel–Cantelli lemma,{
max

0≤n≤αk
Sn ≤ (1 + ε)f(αk) eventually in k

}
a.s.
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iv. To upgrade to the full sequence, consider αk−1 ≤ n ≤ αk. Then

Sn

f(n)
=

Sn

f(αk)
· f(α

k)

αk
· α

k

n
· n

f(n)
≤ (1 + ε)α eventually (in n) a.s.

Note that Sn/f(α
k) ≤ (1 + ε) by step iii above; αk/n ≤ αk/αk−1 = α; and g(n) = f(n)/n is an eventually

decreasing function, so g(αk) · 1/g(n) ≤ 1. In other words, we have just shown that

lim sup
n→∞

Sn

f(n)
≤ (1 + ε)α a.s.

Taking α → 1+, we are done.

Proof of lower bound. Let us show that lim supn→∞ Sn/f(n) ≥ 1− ε a.s. for 0 < ε < 1.

i. Let α > 1, and consider the subsequence (Sαk)k≥1. By the symmetric version of the upper bound,

lim inf
k→∞

Sαk

f(αk)
≥ lim inf

n→∞

Sn

f(n)
≥ −(1 + ε) a.s.

To prove that Sαk/f(αk) exceeds 1 infinitely often, let us consider the differences Sαk − Sαk−1 .

ii. Define the events Ak :=
{
Sαk − Sαk−1 ≥ (1− ε)f(αk − αk−1)

}
. For convenience, we write n = αk − αk−1.

Note that each Sαk −Sαk−1 is σ(Xαk−1+1, . . . ,Xαk)-measurable, so (Ak)k≥1 is mutually independent. More-
over, Sαk − Sαk−1 is equal in distribution to Sn, i.e. P(Ak) = P(Sn ≥ (1− ε)f(n)).

By the second Borel–Cantelli lemma, to show that P(Ak i.o.) = 1, it suffices to show that
∑∞

k=1 P(Ak) = ∞.

iii. By the lower bound on the tail probability of Sn, up to multiplicative constants,

P(Ak) ≥
n1/2

(1− ε)f(n)
exp

(
−(1− ε)2f(n)2

2n

)
∼ c√

log logn
(logn)−(1−ε)2 .

As logn ∼ k by definition of n, we see that the above is not summable, i.e.
∑∞

k=1 P(Ak) = ∞. We remark
that this exponential lower bound is really quite similar in form to the Chernoff upper bound. In both cases, we
consider Sn for n ≃ αk, and our bound is (ef(n)

2/(2n))−c = (elog logn)−c = (k logα)−c. For c = 1+, this term
is summable in k, but not for c = 1−. This is one possible reason for the appearance of f(n)2/(2n) = log logn:
it produces the exact “boundary” k−1 under exponentiation, and we then land on different sides of convergence
or divergence based on our allowance of k−(1+ε)2 or k−(1−ε)2 .

iv. We have shown that Sαk ≥ Sαk−1 + (1− ε)f(αk −αk−1) infinitely often in k a.s. Now, combined with step i,

Sαk

f(αk)
≥ −(1 + ε)f(αk−1)

f(αk)
+ (1− ε)

f(αk − αk−1)

f(αk)
→ −(1 + ε)

α1/2
+ (1− ε)

(
1− 1

α

)1/2

.

(If we want, we may insert an extra −δ in the limit to ensure it is an eventual lower bound, then let δ → 0+.)
As the infinite subsequence (Sαk/f(αk))k≥1 is eventually above this lower bound, for the full sequence,

P

(
lim sup
n→∞

Sn

f(n)
≥ −(1 + ε)

α1/2
+ (1− ε)

(
1− 1

α

)1/2
)

= 1.

Taking ε → 0+ and α ↑ ∞, we are done.

6



Interestingly, f(n) =
√
2n log logn is also a “boundary” between almost sure and in probability convergence for the

random walk Sn: we have just shown that Sn/f(n) cannot converge to 0 a.s., and yet Sn/f(n) → 0 in probability.
(By the CLT and Slutsky’s theorem, n1/2/f(n) · Sn/n

1/2 → 0 in distribution, and convergence in distribution to a
constant is equivalent to convergence in probability to that constant.)

The proof of the LIL gives a perhaps unsatisfying answer to our question about the origin of the log logn term: the
iterated logarithm appears out of a rather technical derivation, amidst a combination of exponential bounds, limits,
approximations, etc. log logn could have been simply conjectured, or possibly found via simulation, although given
that its first proof was in the 1920s, this is slightly unlikely.

Or, f(n) =
√
2n log logn could have been derived from some clever and careful technical observations. After all, the

first proofs would have been attempted in search of the goalpost, not building a path towards a known destination.
We are perhaps lucky that the upper and lower bounds on Sn do coincide at a single “point” f(n); not many bounds
will meet this precisely, or even at all. Perhaps it is a bit unintuitive, but it is still a beautiful result.

So, the next time you go on a random walk, be almost sure to look for the hidden roots and iterated logs lining your
path. [To the best of my knowledge, this final, beautifully lame line is my own.]
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