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Theorem 1 (Weak law of large numbers, or WLLN).

Let X1,X2, . . . be i.i.d. zero-mean random variables with E(|X1|) < ∞. Then Sn/n → 0 in probability.

This note continues an unintentional mini-series on limit theorems in probability: 2023-01-02, 01-03, 01-18, 01-19.
This note is largely adapted from Professor Shirshendu Ganguly’s fall 2022 offering of Math C218A / Stat C205A.

The weak law of large numbers may seem like an unremarkable consequence of the stronger law and the fact that
almost sure convergence implies convergence in probability. However, there are a few reasons why this weaker law is
deserving of its own name, even beyond its historical precedence. The weaker conclusion holds in more situations than
the almost sure conclusion, as we saw in 2023-01-19, or with the Cauchy distribution, which lacks a first moment.

Note that the weak law of large numbers is usually presented before the strong law because its proof is easier. Many
of our remarks and arguments in 2023-01-02 still apply: For instance, we assume the Xi are zero-mean without loss
of generality; a LLN is a statement about cancellation, which the bound E(|Sn|) ≤ nE(|X1|) fails to capture; and
Chebyshev’s inequality applies to bounded random variables.

We start with some formal checks of integrability.

Lemma 1 (Expectation of S2
n).

Let X1,X2, . . . be i.i.d. zero-mean random variables with E(X2
1 ) < ∞. Then E(S2

n) = nE(X2
1 ).

Proof. Expanding out S2
n, by the linearity of expectation,

E(S2
n) =

n∑
i=1

E(X2
i ) +

∑
i̸=j

E(XiXj) = nE(X2
1 ) +

(
n

2

)
E(X1X2)

Note that E(X2
1 ) < ∞ by hypothesis, and E(|XiXj|) ≤ 1

2 E(X
2
i +X2

j ) < ∞ by monotonicity. Moreover, E(XiXj)
factorizes as E(Xi)E(Xj) = 0 by independence (or Fubini’s theorem), and we are done.

Now, Lemma 2 is a simple application of Chebyshev’s inequality.
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Lemma 2 (WLLN with second moment assumption).

Let X1,X2, . . . be i.i.d. zero-mean random variables with E(X2
1 ) < ∞. Then Sn/n → 0 in probability.

Proof. Let ε > 0. Then by Chebyshev’s inequality,

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

)
≤ E(S2

n)

n2ε2
=

E(X2
1 )

nε2
→ 0.

To remove the second moment assumption, we introduce a more general setting: triangular arrays.

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

...

where (Xn,i)
n
i=1 is independent along each row, and we don’t care about how the rows relate. A simple example is

given by the partial sequences (Xi)
n
i=1 of an i.i.d. sequence X1,X2, . . ., but triangular arrays provide a more general

method to deal with a “sequence of sequences,” where the Xn,i depend on n as well as i, similar in spirit to a Cantor
diagonalization argument. We will encounter triangular arrays again in the Lindeberg–Feller Central Limit Theorem.

Lemma 3 (Weak law for triangular arrays).

Let (Xn,i)
n
i=1 be a triangular array, let (bn)∞n=1 be a sequence of real numbers such that bn ↑ ∞, and define the

truncated random variables X̄n,i := Xn,i · 1|Xn,i|≤bn .

1.
∑n

i=1 P(|Xn,i| > bn) → 0.

2.
∑n

i=1 E(X̄2
n,i)/b

2
n → 0.

If conditions 1 and 2 above hold, then

1

bn

n∑
i=1

(Xn,i − E(X̄n,i)) → 0 in probability.

Proof. We write Sn =
∑n

i=1Xn,i and S̄n =
∑n

i=1 X̄n,i.

i. By Chebyshev’s inequality for the truncated sum, which has finite second moment by boundedness,

P

(∣∣S̄n − E(S̄n)
∣∣

bn
> ε

)
≤ var(S̄n)

b2nε
2

≤ 1

ε2

n∑
i=1

E(X̄2
n,i)

b2n
.

By condition 2, this tends to 0, which shows that (S̄n − E(S̄n))/bn → 0 in probability.

ii. Now, we use a common union bound argument to show that the truncated sum does not differ much from the
original sum. By condition 1,

P(Sn ≠ S̄n) ≤
n∑

i=1

P(Xn,i ≠ X̄n,i) =

n∑
i=1

P(|Xn,i| > bn) → 0.
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iii. Finally, combining (S̄n−E(S̄n))/bn → 0 and (Sn− S̄n) → 0, we see that (Sn−E(S̄n))/bn → 0 in probability
as well. A triangle inequality and union bound argument proves that Xn+Yn → X+Y for Xn → X, Yn → Y
in probability in general:

P(|Xn + Yn − (X + Y )| > ε) ≤ P(|Xn −X|+ |Yn − Y | > ε)

≤ P
(
|Xn −X| > ε

2

)
+ P

(
|Yn − Y | > ε

2

)
→ 0.

Proof of Theorem 1. The crux of the argument is the weak law for triangular arrays.

i. Set Xn,i = Xi and bn = n. By the i.i.d. condition,

n∑
i=1

P(|Xn,i| > bn) = nP(|X1| > n).

This is bounded by E(|X1|) by Markov’s inequality, but we want this to tend to 0 for condition 1 to hold. By
dominated convergence, where E(|X1|) < ∞, we have that

nP(|X1| > n) = E(n · 1|X1|>n) ≤ E(|X1| · 1|X1|>n) → 0.

ii. Now, by the i.i.d. condition and the tail-sum approximation, condition 2 becomes

1

n
E(X̄2

1 ) ≈
1

n

n∑
i=1

2iP(|X1| ≥ i) → 0,

where X̄1 = X1 · 1|X1|≤n implicitly depends on n. By the previous step, iP(|X1| ≥ i) → 0 implies that the
running average 1

n

∑n
i=1 P(|Xi| ≥ i) tends to the same limit of 0.

iii. Invoking the weak law for triangular arrays, (Sn/n)− E(X̄1) → 0 in probability. Now, it suffices to show that
E(X1)− E(X̄1) → 0 in probability as n → ∞. We write

E(X1)− E(X̄1) = E(X1 · 1|X1|>n),

which tends to 0 by dominated convergence. A convergent sequence of real numbers converges in probability,
so we are done.

■
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