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Probability spaces are not the only possible foundations for probability theory. For example, free probability roughly
considers random variables, together with algebraic operations and the linear functional of expectation, to be the
central objects of study. A probability space might be described by its “identity random variable,” like in category
theory. Treating simpler objects as particular cases of more “complex” constructions can often give more insight into
the simpler constructions.

For instance, naïvely constructing the positive set in the Hahn–Jordan decomposition theorem using set operations
fails. Instead, considering sets as indicator functions offers more freedom: after verifying Cauchyness in L1, we find
that the limiting function is none other than another indicator function, from which we convert back to a set.

The identity E(1A) = P(A) is also useful in this manner. Expectation may seem like the more complex construction
compared to probability, but it offers additional key properties like linearity. Among other things, this gives us an
alternate derivation of the principle of inclusion-exclusion, now using De Morgan’s laws:
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The product
∏n

i=1(1− 1Ai) expands out to the familiar 2n terms in the principle of inclusion-exclusion. Note that
1A · 1B = 1A∩B is always true, regardless of independence. More importantly, this technique provides a proof for
Bonferroni’s inequalities, alternating lower and upper bounds that generalize the principle of inclusion-exclusion
and Boole’s inequality (subadditivity or the union bound).

Proposition 1.

Let Sk =
∑

i1<···<ik
P(Ai1 ∩ · · · ∩Aik) be the kth term in the principle of inclusion-exclusion, which states that
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A finer statement is that the partial sums form alternating lower and upper bounds by parity:
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Then, we are done by a result on the truncated sums of alternating binomial coefficients. By induction on m, we can
check the following identity:
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, also known as Pascal’s identity. The number of ways to choose m+ 1 elements

out of T is the sum of (the number of choices of m elements out of T − 1) and (the number of choices of m+ 1
elements out of T − 1), depending on a given element is included or excluded.
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of binomial coefficients for odd T , though not immediately obvious for even T . Now, to be more explicit,

P

(
n⋃

i=1

Ai

)
−

m∑
k=1

(−1)k−1Sk = E

(
1A −

m∑
k=1

(−1)k−1

(
T

k

))

= E1A

m∑
k=0

(−1)k
(
T

k

)

= (−1)m E1A

(
T − 1

m

)
is nonpositive when m is odd and nonnegative when m is even. Note that A =

⋃n
i=1Ai, and T = 0 when 1A = 0.

Alternatively, we may have used the fact that Sk is the expected value of the kth elementary symmetric polynomial
ek in the indicators 1A1

, . . . ,1An
, and 1− (1− 1A1

) · · · (1− 1An
) is the indicator of

⋃n
i=1Ai.

For another application of the linearity of expectation with indicator identities, consider the following formula, which,
like Proposition 1, would be difficult to derive from the first principles of probability.

Proposition 2.
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When m = 1, this is the usual principle of inclusion-exclusion.
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Proof. Let T =
∑n

i=1 1Ai as before, and let B be the desired event that T = m. Then
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Now, by the principle of inclusion-exclusion, the last term is
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Distributing the multiplication (or intersection) by 1⋂
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, we have that
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The first sum is over all subsets with m distinct indices. The second sum counts every subset of size m+ k exactly(
m+k
m

)
times, which is the number of ways to split such a subset into I ⊔K with |I| = m and |K| = k. Finally,

taking expectations on both sides,
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For a final remark, if probability spaces are the spaces and random variables the morphisms in probability theory, then
“probability subspaces” are given by conditional spaces (B,F|B,P(· | B)) for P(B) > 0. The restricted event space
F|B is {A ∩B : A ∈ F}, or equivalently {A ⊆ B : A ∈ F}, while the conditional probability measure P(· | B) is
suitably normalized as P(· ∩B)/P(B). Conditioning on B is the same as restricting to outcomes where B occurs.

However, a more powerful definition is the regular conditional probability P(A | F) = E(1A | F), which contains the
notions of P(A | X(ω)) = P(A | σ(X))(ω) and P(A | B) = P(A | σ(B)) = P(A | {∅, B,Bc,Ω}). This “probability
as expectation” finds applications in Markov transition kernels, random measures, Radon spaces, etc.
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