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This note is an addendum to 2023-01-19, in which I naïvely stated there may be no satisfying explanation for the
term

√
2n log logn in the law of the iterated logarithm. Of course, it turns out there is one, and I just hadn’t looked

hard enough. The main ideas in this note were relayed to me by Professor Shirshendu Ganguly; certain additions —
elaborations, errors, extended metaphors — are my own.

Like putting cling wrap tightly over a mountain, the asymptotic envelope of the trajectory of a random walk is not
its approximate contour, but is “supported” on certain points of exceptional maximality. Along the way, there are
certain peaks that stick out more sharply, and valleys that jut out in the negative direction, poking and prodding the
envelope, stretching its boundary and shape.

This is ultimately another story of simplification and approximation.

It’s not easy to tell where a “representative peak” will rise from. A mountain range is a connected land mass, and the
geographical features of a random walk are locally constant. Any given point has some chance of being representative,
but once we know a point, neighboring points in its sphere of influence are bound to be near the same elevation,
pulled up to its height or down to its depth. This is the constraint of bounded increments on the terrain — there are
no cliffs or trenches.

|Sn+d − Sn| ≤ d.

Perhaps, if we look away far enough from one representative point, we’ll find another. But it’s not enough to look a
fixed additive distance away: as n increases, the typical magnitude of Sn is in the order of

√
n. Then, Sn+d could

very well be part of the same regional feature as Sn, a fluctuation of size d minuscule relative to the size of Sn. At
an apex of the towering Great Wall, would you call the top of a nearby staircase another peak?

So, let us consider the next best thing: to look a fixed multiplicative distance away. We may consider Sn and Scn for
any c > 1, but for simplicity, let us take c = 2. Our goal is in approximation, after all.

Sn and S2n are approximately uncorrelated.

Well, cov(Sn, S2n) = E(SnS2n) = E(S2
n) + 0 = n, and

√
var(Sn) var(S2n) =

√
n ·

√
2n =

√
2n, so the correlation

coefficient is 1/
√
2 ≈ 0.7, which doesn’t seem very close to 0. However, the correlation 1/

√
c can be made as close

to 0 as we’d like; we will see that the exact choice of c = 2 will not matter much.
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Now, applying the normal approximation given by the Central Limit Theorem, we can leverage a key fact: uncorrelated
and jointly Gaussian random variables are independent. That is, Sn, Sn/2, Sn/4, . . . are approximately uncorrelated
and thus approximately independent. Like individual volcanoes rising from a random sea, unlike parts of the same
continuous mountain range, these log2 n points are independent candidates for the support of the envelope, or an
approximation of the maximal value attained — the representative peaks we are looking for.

(Sn and Sn/2 are certainly not independent, but they are decorrelated enough. While the first few terms S1, S2, S4, . . .
are very strongly dependent, consecutive terms Sm, S2m are eventually far enough apart thanks to the multiplicative
scaling. Considering additive distances would have still left us with n/d ∈ Θ(n) many representative peaks, unlike
the reduced log2 n bits of information we have now.)

And, the distance between Sn and Sn/2 may certainly seem a bit large — what if peaks arise in between the indices
n/2 and n, which is certainly possible? The point of approximation with representative peaks is to have a reasonably
close lower bound on the probability that the elevation ever exceeds some level. Points between Sn/2 and Sn are
essentially in the “sphere of influence” of Sn/2 or Sn; the real key is that Sn, Sn/2, . . . are freely varying random
variables, like volcanoes independently rising from a random sea.

Let k = logn, and let Tk, Tk−1, Tk−2, . . . := Sn, Sn/2, Sn/4, . . . be independent. Then

P
(

max
1≤m≤n

Sm ≥ t

)
≈ P

(
max
1≤i≤k

Ti ≥ t

)
.

We can also look at a real mountain range, or rather the clouds above it, imagining Sn, Sn/2, Sn/4, . . . as a small
flock of clouds grazing on the mountaintops, distant enough that each is free to float as it pleases. We have used
the technique of taking an exponential subsequence in two proofs of the SLLN and a proof of the LIL, where it gave
a fast subsequence; here, it takes on the role of independent proxies for the supremum.

Now, we can further approximate the Ti as being identically distributed as N (0, n) =
√
n · N (0, 1). The variances

of Sn, Sn/2, Sn/4, . . . are all in the order of n. (Again, the first few terms S1, S2, S4, . . . are not quite N (0, n), but
eventually the variance is comparable to n by the multiplicative scaling.) Normalizing Zi = Ti/

√
n, we can treat the

“clouds” as k = logn i.i.d. standard normal random variables.

For a given threshold t, the probability that one of Z1, . . . , Zk i.i.d. N (0, 1) exceeds t is

P
(
max
1≤i≤k

Zi ≥ t

)
= 1− (1− P(Z1 ≥ t))k = 1− (1− e−t2/2)k

by De Morgan’s laws and independence. We want P(max1≤i≤k Zi ≥ t) ∈ Θ(1) to be some large probability constant
in k. If it tends to 1 quickly as k → ∞, for example when t =

√
k, then t is not a proper envelope: the trajectory

will exceed it too easily. If it tends to 0, then the opposite is true: t is not tight enough.

We will use the approximation 1− (1− 1
k )

k ≈ 1− e−1 ≈ 0.63. Of course, any other c
k ∈ Θ( 1k ) would be reasonable

as well; we take 1
k for simplicity. This means that we want

e−t2/2 ≈ 1

k
=⇒ t ≈

√
2 log k.

Recall that log k = log logn by definition. Lastly, this threshold is scaled by
√
n to revert the normalization performed

on Sn, Sn/2, . . ., which gives us the term
√
2n log logn. In other words,
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P
(
max1≤m≤n Sm ≥

√
2n log logn

)
≈ 1− e−1.

Or, more straightforwardly, we treat the k clouds Sn, Sn/2, . . . as i.i.d. N (0, n) random variables to find the threshold

P
(
max
1≤i≤k

Ti ≥ t

)
= 1− (1− e−t2/(2n))k ≈ 1− e−1 =⇒ t ≈

√
2n log k =

√
2n log logn.

The remaining probability of e−1 perhaps accounts for the lands in between the representative peaks. This probability
is an approximate lower bound, after all. In any case, we have a “tight” asymptotic estimate of sup1≤m≤n Sm: it lies
above and below

√
2n log logn both with high probability, which indicates that lim supSn ∼

√
2n log logn perhaps

almost surely. Indeed, previous arguments show that this threshold is the right envelope to consider.

Finally, we also have a more direct explanation for the term
√
2n log logn. By the CLT, the tail probability of Sn is

asymptotically e−t2/(2n), whose inverse is
√
2n logu−1. A factor of logn appears in u−1 from the approximation of

sup1≤m≤n Sn using the semi-independent exponential subsequence Sn, Sn/2, Sn/4, . . ., which has logn terms.

So, the next time you try to cling wrap a mountain range, look to the clouds for guidance.

■
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