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Simple random walks need no further introduction. (Sn)n∈N for Sn =
∑n

i=1Xi the partial sums of i.i.d. Rademachers
X1,X2, . . ., simple random walks form a canonical example of martingales, Markov chains, and random processes in
general. Because its definition is so discrete and so ripe with symmetry, results for simple random walks are often
very combinatorial (and thus sometimes asymptotic) in nature — the De Moivre–Laplace Central Limit Theorem,
local CLTs, the Law of the Iterated Logarithm, the arcsine law, etc.

To find hitting times and hitting probabilities for simple random walks, a common technique is an alternate form of
truncation: halt the random walk at some finite level, which forms a new martingale, the stopped random walk. Then,
standard arguments are used to pass to the limit: convergence theorems, the monotone continuity of probability,
countable unions of events over naturals or rationals, etc.

For example, consider the hitting probabilities in the symmetric gambler’s ruin problem, which is also a canonical
example of an absorbing Markov chain. For levels −a < 0 < b, let τ−a = inf{n ≥ 1 : Sn = −a} and τb be hitting
times, and let τ = τ−a ∧ τb be the stopping time, the first time step in which Sn hits {−a, b}. Invoking the Optional
Stopping Theorem, we have that

0 = E(S0) = E(Sτ ) = −aP(τ−a < τb) + bP(τb < τ−a) = −a · (1− α) + b · α,

which shows that the hitting probability of level b is α = a
a+b . If a = −1 and b = M − 1, this equality says that

P1(τM < τ0) =
1

M
.

The probability that starting from 1, the trajectory of the process ever reaches M before it hits 0 is exactly inversely
proportional to M , the distance between 0 and M . For this particular case, this is a stronger statement than Doob’s
martingale inequality, the Markov-like bound on the tail probability of the maximal process.

——

We can also consider the expected hitting time E(τ) in the symmetric gambler’s ruin problem. Again, we will need
to consider the stopped process Sn∧τ , because the regular Sn does not incorporate any information about τ . We
know that S2

n∧τ − (n ∧ τ) is a martingale, which implies that

E(S2
n∧τ − (n ∧ τ)) = E(S2

0 − 0) = 0.

Passing to the limit as n → ∞, E(n ∧ τ) → E(τ) by MCT, and E(S2
n∧τ ) → E(S2

τ ) by BCT, where Sτ ≤ max(a, b).
Therefore the expected hitting time is

E(τ) = E(S2
τ ) =

b

a+ b
· a2 + a

a+ b
· b2 = ab.
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——

Let us use the above to show that starting from 0, the random walk Sn will hit any given level b > 0 almost surely.
That is, we wish to pass from a two-sided bound to a one-sided bound. We have previously seen a proof of this fact
in the context of martingales with bounded increments, where we showed that

P
(
Mn has a finite limit or lim inf

n→∞
Mn = −∞∧ lim sup

n→∞
Mn

)
= 1.

Of course, by its nature, the random walk Sn cannot have a limit, so Sn must in fact oscillate infinitely often, visiting
every level [!] infinitely many times almost surely.

But, to use the fact that E(τ−a ∧ τb) = ab, we observe that

P(τb < ∞) ≥ P(τb < τ−a) for any − a < 0.

E(τ) < ∞ implies that τ = τ−a ∧ τb < ∞ a.s., so if τb < τ−a, then τb = τ < ∞. After reducing to the simpler case
of the “strip” [−a, b] bounded above and below, we can use the previously found hitting probability:

P(τb < ∞) ≥ lim
a→∞

P(τb < τ−a) = lim
a→∞

a

a+ b
= 1.

This shows that the symmetric random walk is recurrent. Combined with the fact that E(τb) = ∞ for any b, again
through a limiting argument, we have shown that the symmetric random walk is null recurrent. With some more
analysis, we can gain a finer understanding of τ0 than E1(τ0) = ∞:

P0(τ0 > 2n) = P0(S2n = 0) ∼ 1√
πn

.

This note was adapted largely from Professor Shirshendu Ganguly’s spring 2023 iteration of Math C218B / Stat
C205B at UC Berkeley.
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