Two 0-1 laws

Alex Fu

2023-02-09

Beyond various limit theorems, convergence theorems, and concentration inequalities, another class of useful results in probability are $\mathbf{0} \mathbf{- 1}$ laws, which provide sufficient conditions for an event to be trivial, $\mathbb{P}(\cdot)=0$ or 1 . In applications, any lower bound or upper bound is enough to show that such an event is almost sure or almost never.

One of the most common arguments for showing that a σ-algebra \mathcal{F} is trivial is to show that \mathcal{F} is independent of itself: $\mathbb{P}(A)=\mathbb{P}(A \cap A)=\mathbb{P}(A) \cdot \mathbb{P}(A)=\mathbb{P}(A)^{2}$ iff $\mathbb{P}(A) \in\{0,1\}$.

Theorem 1 (Kolmogorov's 0-1 law).
Let X_{1}, X_{2}, \ldots be a sequence of independent random variables, and let

$$
\mathcal{T}=\bigcap_{n=1}^{\infty} \sigma\left(X_{n}, X_{n+1}, \ldots\right)
$$

be the tail σ-algebra, analogous to the limit superior of the information in $\left(X_{n}\right)_{n \geq 1}$. Then \mathcal{T} is trivial: every $A \in \mathcal{T}$ has $\mathbb{P}(A)=0$ or 1.

Proof. It suffices to show that \mathcal{T} is independent of $\sigma\left(X_{1}, X_{2}, \ldots\right) \supseteq \mathcal{T}$. And, as $\bigcup_{n=1}^{\infty} \sigma\left(X_{1}, \ldots, X_{n}\right)$ is a π-system generating $\sigma\left(X_{1}, X_{2}, \ldots\right)$, it suffices to show that $\mathcal{T} \Perp \bigcup_{n=1}^{\infty} \sigma\left(X_{1}, \ldots, X_{n}\right)$. For any $B \in \sigma\left(X_{1}, \ldots, X_{n}\right)$,

$$
A \in \mathcal{T} \subseteq \sigma\left(X_{n+1}, X_{n+2}, \ldots\right) \Longrightarrow A \Perp B
$$

The following $0-1$ law is a stronger result showing the triviality of a larger σ-algebra.

Theorem 2 (Hewitt-Savage 0-1 law).
Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables, and let

$$
\mathcal{E}=\left\{A \in \sigma\left(X_{1}, X_{2}, \ldots\right): A \text { invariant under any finite permutation of the indices }\right\}
$$

be the exchangeable σ-algebra. Then \mathcal{E} is trivial.

Proof. To show that \mathcal{E} is independent of itself, it suffices to show that $\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}\right)=\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right)\right)$ for every $k \geq 1$ and bounded measurable function f, in which case $\mathcal{E} \Perp \bigcup_{k=1}^{\infty} \sigma\left(X_{1}, \ldots, X_{k}\right)$. Let

$$
\mathcal{E}_{n}=\left\{A \in \sigma\left(X_{1}, X_{2}, \ldots\right): A \text { invariant under every permutation } \pi \in S_{n}\right\}
$$

such that $\mathcal{E}=\bigcap_{n=1}^{\infty} \mathcal{E}_{n}$.
i. We observe that $\mathbb{E}\left(f\left(X_{1}\right) \mid \mathcal{E}_{n}\right)=\mathbb{E}\left(f\left(X_{i}\right) \mid \mathcal{E}_{n}\right)$ for all $i=1, \ldots, n$ by a simple change of measure, along with the i.i.d.ness of the X_{i} and the invariance of events in \mathcal{E}_{n}. Then

$$
\mathbb{E}\left(f\left(X_{1}\right) \mid \mathcal{E}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)
$$

where the right-hand side is \mathcal{E}_{n}-measurable and equal to the left-hand side by linearity of conditional expectation. Using the same argument,

$$
\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right)=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

ii. Let $M_{n}:=\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right)$. We observe that $\left(M_{n}\right)_{n \rightarrow \infty}$ is a bounded backwards martingale, which makes it automatically uniformly integrable, with limit

$$
\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right) \rightarrow M:=\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}\right) \quad \text { a.s. and in } L^{1}
$$

iii. But, by step i , the right-hand side M is also equal to the \mathcal{T}-measurable

$$
\lim _{n \rightarrow \infty} \frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

Tail-measurable random variables are trivial, so M is in fact constant almost surely. Because

$$
\mathbb{E}\left(M_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right)\right) \equiv \mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right)\right)
$$

for every n by the law of iterated expectation, $\mathbb{E}\left(M_{n}\right) \rightarrow \mathbb{E}(M)$ must equal $\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right)\right)$, by which we are done: we have shown that $M=\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right) \mid \mathcal{E}\right)$ equals $\mathbb{E}\left(f\left(X_{1}, \ldots, X_{k}\right)\right)$ almost surely.

We have already seen the Borel-Cantelli lemmas, but Blumenthal's and Lévy's 0-1 laws are yet to be covered. We will leave them to another day.

