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Beyond various limit theorems, convergence theorems, and concentration inequalities, another class of useful results in
probability are 0–1 laws, which provide sufficient conditions for an event to be trivial, P(·) = 0 or 1. In applications,
any lower bound or upper bound is enough to show that such an event is almost sure or almost never.

One of the most common arguments for showing that a σ-algebra F is trivial is to show that F is independent of
itself: P(A) = P(A ∩A) = P(A) · P(A) = P(A)2 iff P(A) ∈ {0, 1}.

Theorem 1 (Kolmogorov’s 0–1 law).

Let X1,X2, . . . be a sequence of independent random variables, and let

T =

∞⋂
n=1

σ(Xn,Xn+1, . . .)

be the tail σ-algebra, analogous to the limit superior of the information in (Xn)n≥1. Then T is trivial: every
A ∈ T has P(A) = 0 or 1.

Proof. It suffices to show that T is independent of σ(X1,X2, . . .) ⊇ T . And, as
⋃∞

n=1 σ(X1, . . . ,Xn) is a π-system
generating σ(X1,X2, . . .), it suffices to show that T ⊥⊥

⋃∞
n=1 σ(X1, . . . ,Xn). For any B ∈ σ(X1, . . . ,Xn),

A ∈ T ⊆ σ(Xn+1,Xn+2, . . .) =⇒ A ⊥⊥ B.

The following 0–1 law is a stronger result showing the triviality of a larger σ-algebra.

Theorem 2 (Hewitt–Savage 0–1 law).

Let X1,X2, . . . be a sequence of i.i.d. random variables, and let

E = {A ∈ σ(X1,X2, . . .) : A invariant under any finite permutation of the indices}

be the exchangeable σ-algebra. Then E is trivial.
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Proof. To show that E is independent of itself, it suffices to show that E(f(X1, . . . ,Xk) | E) = E(f(X1, . . . ,Xk))
for every k ≥ 1 and bounded measurable function f , in which case E ⊥⊥

⋃∞
k=1 σ(X1, . . . ,Xk). Let

En = {A ∈ σ(X1,X2, . . .) : A invariant under every permutation π ∈ Sn} ,

such that E =
⋂∞

n=1 En.

i. We observe that E(f(X1) | En) = E(f(Xi) | En) for all i = 1, . . . , n by a simple change of measure, along
with the i.i.d.ness of the Xi and the invariance of events in En. Then

E(f(X1) | En) =
1

n

n∑
i=1

f(Xi),

where the right-hand side is En-measurable and equal to the left-hand side by linearity of conditional expectation.
Using the same argument,

E(f(X1, . . . ,Xk) | En) =
1(
n
k

) ∑
1≤i1<···<ik≤n

f(Xi1 , . . . ,Xik).

ii. Let Mn := E(f(X1, . . . ,Xk) | En). We observe that (Mn)n→∞ is a bounded backwards martingale, which
makes it automatically uniformly integrable, with limit

E(f(X1, . . . ,Xk) | En) → M := E(f(X1, . . . ,Xk) | E) a.s. and in L1.

iii. But, by step i, the right-hand side M is also equal to the T -measurable

lim
n→∞

1(
n
k

) ∑
1≤i1<···<ik≤n

f(Xi1 , . . . ,Xik).

Tail-measurable random variables are trivial, so M is in fact constant almost surely. Because

E(Mn) = E(E(f(X1, . . . ,Xk) | En)) ≡ E(f(X1, . . . ,Xk))

for every n by the law of iterated expectation, E(Mn) → E(M) must equal E(f(X1, . . . ,Xk)), by which we
are done: we have shown that M = E(f(X1, . . . ,Xk) | E) equals E(f(X1, . . . ,Xk)) almost surely.

We have already seen the Borel–Cantelli lemmas, but Blumenthal’s and Lévy’s 0–1 laws are yet to be covered. We
will leave them to another day.
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