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Chapter 1

Dirichlet Processes

1.1 Introduction

We start with the notion of a convex set in a linear space. Recall that a convex combination (in a real vector space)
is a linear combination of vectors whose coefficients are nonnegative and sum to 1. We say that a set is convex if it is
closed under taking convex combinations. A standard example of a convex set is the set of all convex combinations
of a given set of vectors S, which is called the convex hull of S and denoted by hull(S).

Let K be a compact convex subset of Rd .

Definition 1.1.1. An extreme point of K is a point in K that cannot be written as a nontrivial convex combination
of other points.

Fact 1.1.2. Any point in K can be represented by a convex combination of the extreme points in K .

This representation is not necessarily unique. However, it is unique whenever K is a simplex. (For example, take
K to be an interval in dimension d = 1, a triangle in dimension 2, a tetrahedron in dimension 3, and so on.)

Question 1.1.3. How does this extend to infinite dimensions? (And what does this have to do with probability?)

One straightforward observation is that convex combinations are sums whose weights form discrete probability
distributions, but we will want something a bit more exciting than that. The idea of convex representations shows
up a lot in probability; we will look at many examples of this phenomenon.

1.2 Dirichlet distributions

The first example that we will consider is the Dirichlet distribution on the convex set of all probability distributions
on a finite set.

Notation 1.2.1. Let ∆n denote the n-dimensional unit simplex, {v⃗ ∈ Rn | vi ≥ 0 for all i = 1, . . . ,n, and
∑n

i=1 vi ≤ 1}.
Let An ⊂∆n denote the probability simplex or standard simplex in Rn , namely

An := hull({⃗e1, . . . , e⃗n}) =
{

v⃗ ∈Rn

∣∣∣∣∣ vi ≥ 0 for all i = 1, . . . ,n, and
n∑

i=1
vi = 1

}
,

where e⃗i = ei denotes the i th coordinate vector in Rn for each i = 1, . . . ,n. Let [n] denote the set {1, . . . ,n}.

With this notation, we can equivalently consider the set of all probability distributions on [n] to be An . It follows
that a distribution on An determines a random probability measure on [n].
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6 CHAPTER 1. DIRICHLET PROCESSES

Definition 1.2.2. Given α> 0 and β> 0, we say that a R≥0-valued random variable X has the gamma distribution
with shape parameter α and scale parameter β if it has probability density

βαxα−1

Γ(α)
e−βx , ∀x ≥ 0,

where Γ is the usual gamma function defined by Γ(α) = ∫ ∞
0 xα−1e−x dx.

Lemma 1.2.3. Let X1, . . . , Xn be independent random variables, where each Xi has distribution Γ(αi ,β). Then X1 +
·· ·+Xn has distribution Γ(α1 +·· ·+αn ,β).

For the sake of simplicity, we will be leaving many proofs to the appendix, including routine checks, solutions to
exercises, and proofs that we do not deem relevant or necessary for the reader to know.

Definition 1.2.4. Givenα1, . . . ,αn+1 > 0, we say that the random vector (V1, . . . ,Vn+1) has the Dirichlet distribution
with parameters (α1, . . . ,αn+1) if V1 +·· ·+Vn+1 = 1 and the random vector (V1, . . . ,Vn) has probability density

Γ(α1 +·· ·+αn+1)

Γ(α1) · · ·Γ(αn)
vα1−1

1 · · ·vαn−1
n

(
1−

n∑
i=1

vi

)αn+1−1

·1{(v1, . . . , vn) ∈∆n}.

This definition is motivated by the following equivalent but more constructive definition:

Definition 1.2.5. Let X1, . . . , Xn+1 be independent random variables such that Xi ∼ Γ(αi ,β) for each i = 1, . . . ,n+1.
Let Si = X1 +·· ·+Xi and Vi = Xi /Sn+1 for each 1 ≤ i ≤ n +1. Then (V1, . . . ,Vn+1) and Sn+1 are independent, and we
say that (V1, . . . ,Vn+1) has the Dirichlet distribution with parameters (α1, . . . ,αn+1). In this case, we write

(V1, . . . ,Vn+1) ∼ Dir(α1,...,αn+1).

Note that this definition does not depend on the choice of scale parameter β. For convenience, we will often take
β= 1. Also, we may allow some but not all of the αi to be 0, where we adopt the convention that a random variable
with distribution Γ(0,β) is identically 0.

Remark 1.2.6. It is somewhat of a miracle that the normalized vector (V1, . . . ,Vn+1) is independent of the normal-
izer Sn+1. This property in fact characterizes the gamma distribution; see Lukacs’ proportion-sum independence
theorem [1, 2]. (Also see [3] for a related characterization of the Dirichlet distribution.)

A key property of the Dirichlet distribution is the following:

Lemma 1.2.7 (Aggregation). Suppose that V has the Dirichlet distribution with parameters (α1, . . . ,αn+1). For some
1 ≤ r ≤ n, let Wi =Vi for every 1 ≤ i ≤ r , and let Wr+1 =Vr+1 +·· ·+Vn+1. Then W has the Dirichlet distribution with
parameters (α1, . . . ,αr ,βr+1), where βr+1 =αr+1 +·· ·+αn+1.

Iteratively applying this result, we see that “clumping together” entries in a Dirichlet random vector gives another
Dirichlet random vector, whose parameters are given by “clumping together” the original parameters in the same
manner. That is, if φ : [n +1] → [m +1] is a surjective function and we put U j =∑

i :φ(i )= j Vi for every 1 ≤ j ≤ m +1,
then U has the Dirichlet distribution with parameters (γ1, . . . ,γm+1) where γ j =∑

i :φ(i )= j αi .

It is also worth noting that the Dirichlet distribution (with n+1 parameters) is the multivariate generalization of
the beta distribution:

Definition 1.2.8. Given α,β> 0, we say that a random variable X has the beta distribution with parameters α and
β if it takes values in [0,1] and has probability density function

Γ(α+β)

Γ(α)Γ(β)
xα−1(1−x)β−1.

In this case, we write X ∼ B(α,β).
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Note that the first component of a random vector with distribution Dir(α,β) has distribution B(α,β). More gener-
ally, the marginal distributions of a Dirichlet random vector are beta distributions:

Lemma 1.2.9. If (V1, . . . ,Vn+1) ∼ Dir(α1,...,αn+1), then Vi ∼ B(αi , (
∑n+1

j=1 α j )−αi ) for each i = 1, . . . ,n +1.

Informally, we remark that the aggregation property and the marginal distributions of the Dirichlet distribution
make it in some sense “self-similar”, like the multivariate Gaussian distribution.

In the next section, we will generalize Dirichlet distributions to the infinite-dimensional case. Such Dirichlet pro-
cesses or Dirichlet measures form a class of distributions of random probability measures on a general measurable
space (X ,Σ). These distributions have applications in statistics, for example, in Bayesian nonparametrics.

1.3 Construction of Dirichlet processes

Definition 1.3.1 (Bayesian nonparametrics). Suppose X is a random variable, representing “data” taking values in
a measurable space (X ,Σ). Let the unknown distribution of X be P . Then P is the parameter in the nonparametric
problem, and it takes values in P , the collection of all probability measures on (X ,Σ). Now let C be the σ-algebra
on P that is generated by sets of the form

{P ∈P | P (A) < r }, ∀A ∈Σ, ∀r ∈ [0,1].

Then (P ,C) is a measurable space. A probability measure ν on (P ,C) can be used as a prior distribution for P . The
Bayesian solution is to compute the posterior distribution νX of P given X , and use it for decision making.

We also define a measurable partition of X to be a partition of X into measurable subsets.

Definition 1.3.2. Let M be the class of nonzero finite measures on (X ,Σ), and let α ∈M . We say that a probability
distribution ν on (P ,C) is a Dirichlet measure with parameter α if for every measurable partition {B1, . . . ,Bk } of X

into finitely many subsets, we have

(1.3.3) (P (B1), . . . ,P (Bk )) ∼ Dir(α(B1),...,α(Bk ))

under ν (i.e., if P ∼ ν). In this case, we denote ν by Dirα.

Observe that the finite-dimensional Dirichlet distribution is a special case of the Dirichlet measure by the aggre-
gation property. That is, if α is a nonzero finite measure on [k], then the Dirichlet measure Dirα coincides with the
k-dimensional Dirichlet distribution Dir(α({1}),...,α({k})). However, we have yet to show that Dirichlet measures exist
in the general case.

Remark 1.3.4. Dirichlet processes were first formally introduced by Ferguson [4], who gave a direct proof of their
existence via the Kolmogorov Consistency Theorem. We will be following a later proof by Sethuraman [5], a more
constructive approach in terms of the so-called “stick-breaking” process.

To motivate the constructive definition, let us state three main properties of Dirichlet measures that make them
useful in Bayesian nonparametrics:

Proposition 1.3.5 (Properties of the Dirichlet measure).

P1. Dirα is a probability measure on (P ,C).

P2. Dirα assigns probability 1 to the subset of all discrete probability measures on (X ,Σ).

P3. The posterior distribution DirX
α is the Dirichlet measure Dirα+δX , where δX denotes the degenerate probability

distribution on (X ,Σ) localized at X .
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The posterior distribution DirX
α may seem slightly convoluted, so let us elaborate on its definition. We start with

P ∼ Dirα, a random element of (P ,C). This gives rise to X ∼ P , a random element of (X ,Σ). After observing X , the
posterior DirX

α is the conditional distribution of P given X . This posterior exists because P and X are defined on a
common underlying probability space (Ω,F ,Q), as we will see shortly.

Notation 1.3.6. Given a finite measure α on (X ,Σ), we denote its total variation α(X ) by ∥α∥.

Definition 1.3.7 (Constructive definition of the Dirichlet measure [5]). Letαbe a nonzero finite measure on (X ,Σ),
and letβ=α/∥α∥ be the normalized probability distribution arising fromα. Let θ1,θ2, . . . be i.i.d. random variables
with common distribution B(1,∥α∥). Define a probability distribution on Z+ by

p1 = θ1,

pn = θn

n−1∏
m=1

(1−θn) ∀n ≥ 2.

We say that the sequence (p1, p2, . . .) is constructed via stick-breaking from the proportions or weights (θ1,θ2, . . .).
Now let Y1,Y2, . . . be i.i.d. random variables with common distribution β, independent of (θ1,θ2, . . .). Then define a
random probability measure P on (X ,Σ) by

(1.3.8) P (B) = P (θ,Y;B) :=
∞∑

n=1
pnδYn (B).

The distribution of P is the Dirichlet measure with parameter α.

Observe that properties P1 and P2 are satisfied by design. In order to give a proof of property P3, we introduce
an additional random variable I as follows. Let (Ω,F ,Q) be a probability space supporting a collection of random
variables (θ,Y, I ) = ((θn ,Yn),1 ≤ n ≤ I ). Define θn , pn , Yn , ∀n ≥ 1 as before. We define I by

Q(I = n | (θ,Y)) = pn ∀n ≥ 1.

This gives a valid probability distribution on Z+ since
∑n

m=1 pm = 1−∏n
m=1(1−θm) → 1 holds withQ-probability 1.

We will be using I in the next section.

Now, the first order of business is to prove the following:

Proposition 1.3.9. The distribution of P is Dirα.

TODO: To be continued . . .



Bibliography

[1] Eugene Lukacs. A characterization of the gamma distribution. The Annals of Mathematical Statistics, 26(2):319–
324, 1955.

[2] James E. Mosimann. On the compound multinomial distribution, the multivariate β-distribution, and corre-
lations among proportions. Biometrika, 49(1–2):65–82, 1962.

[3] Ian R. James and James E. Mosimann. A new characterization of the Dirichlet distribution through neutrality.
The Annals of Statistics, 8(1):183–189, 1980.

[4] Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:209–230,
1973.

[5] Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4(2):639–650, 1994.

[6] David Blackwell and James B. MacQueen. Ferguson distributions via Pólya urn schemes. The Annals of Statis-
tics, 1(2):353–355, 1973.

9



10 BIBLIOGRAPHY



Appendix A

Proofs

A.1 Chapter 1: Dirichlet Processes

Lemma 1.2.3. Let X1, . . . , Xn be independent random variables, where each Xi has distribution Γ(αi ,β). Then X1 +
·· ·+Xn has distribution Γ(α1 +·· ·+αn ,β).

Proof. It suffices to prove the case of n = 2, after which the general result follows by induction. So, let X1 ∼ Γ(α1,β)
and X2 ∼ Γ(α2,β) be independent random variables. The probability density function of their sum is

f (x) = βα1βα2

Γ(α1)Γ(α2)

∫ x

0
tα1−1(x − t )α2−1e−βt e−β(x−t ) dt

= βα1+α2

Γ(α1)Γ(α2)
e−βx

∫ 1

0
(ux)α1−1((1−u)x)α2−1x du

= βα1+α2

Γ(α1)Γ(α2)
e−βx xα1+α2−1

∫ 1

0
uα1−1(1−u)α2−1 du.

From the definition of the beta distribution, we find that the last integral evaluates to Γ(α1)Γ(α2)/Γ(α1+α2). Thus,
the probability density function of X1 +X2 simplifies to

f (x) = βα1+α2 xα1+α2−1

Γ(α1 +α2)
e−βx ,

which is precisely the probability density function of a random variable with distribution Γ(α1 +α2,β).

Lemma 1.2.7 (Aggregation). Suppose that V has the Dirichlet distribution with parameters (α1, . . . ,αn+1). For some
1 ≤ r ≤ n, let Wi =Vi for every 1 ≤ i ≤ r , and let Wr+1 =Vr+1 +·· ·+Vn+1. Then W has the Dirichlet distribution with
parameters (α1, . . . ,αr ,βr+1), where βr+1 =αr+1 +·· ·+αn+1.

Proof. This follows directly from Lemma 1.2.3 and Definition 1.2.5.

Lemma 1.2.9. If (V1, . . . ,Vn+1) ∼ Dir(α1,...,αn+1), then Vi ∼ B(αi , (
∑n+1

j=1 α j )−αi ) for each i = 1, . . . ,n +1.

Proof. Assume i = 1 without loss of generality. We write α for α1 +·· ·+αn+1. By the aggregation property, (V1,V2 +
·· ·+Vn+1) has distribution Dir(α1,α−α1). From this, we see that the marginal distribution of V1 is B(α1,α−α1).

TODO: To be continued . . .
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