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Now that we are able to characterize individual and finite collections of random variables, let us
consider countably infinite collections — sequences of random variables. The first and foremost
ideas that arise in the study of sequences are the limit and the related convergence.

Definition 1 (Limit; convergence; pointwise convergence).

A sequence of real numbers (xn)
∞
n=1 is said to converge to a limit x ∈ R, denoted xn → x,

if “eventually, any deviation can be made arbitrarily small.” That is, for any ε > 0,

there exists N such that for all n ≥ N, |xn − x| < ε.

The classic mode of convergence of a sequence of real-valued functions (fn)∞n=1 is pointwise
convergence: “at every point t in the domain, fn(t) → f(t) as real numbers.”

Throughout, let ε > 0, let (Ω,F ,P) be a shared probability space, and let (Xn)
∞
n=1 be a sequence

of real-valued random variables. Xn : Ω → R do have a sense of possible pointwise convergence,
but here, we will explore some more common and more interesting modes of convergence of
random variables which involve probability:

almost surely =⇒ in probability =⇒ in distribution.

1 Almost sure convergence

Definition 2 (Almost sure convergence).

(Xn)
∞
n=1 converges almost surely (a.s.) to X if

P
(
lim
n→∞

Xn = X
)
= P

({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

This is denoted Xn
a.s.→ X. Equivalently, Xn

a.s.→ X if P(limn→∞Xn ̸= X) = 0.
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Example 1 (Convergence almost surely but not pointwise).

Let Ω = [0, 1], and let P be uniform, so the probability of an event is its length. Then

Xn(ω) =

{
n if ω ∈ [0, 1

n
]

0 otherwise

converges almost surely to the constant 0. Show that Xn(ω) converges to X(ω) pointwise
on the set of outcomes (0, 1], which has probability 1.

Almost sure convergence is usually the strongest form of convergence we will work with, in line
with the philosophy of “caring up to almost surely,” or up to “convergence with probability 1.”
However, it may be difficult to show a.s. convergence from its definition in general, so we present
two commonly used results.

Theorem 1 (Strong Law of Large Numbers).

If (Xn)
∞
n=1 are i.i.d. random variables with finite mean µ = E(X1), then the sample mean

X̄n converges almost surely to the true mean. That is,

X̄n =
1

n

n∑
i=1

Xi
a.s.−→ µ.

The SLLN is celebrated due to its very weak assumptions and its very strong conclusion of a.s.
You may find a proof of a slightly weaker form of the SLLN assigned to you as homework, involving
fourth moments and the following general result:

Definition 3 (Infinitely often).

Let {An}∞n=1 be a countably infinite collection of events. Then the event that An happens
infinitely often is

An i.o. := lim sup
n→∞

An =
∞⋂
n=1

⋃
k≥n

Ak.

Equivalently, ω ∈ An i.o. if for every n ≥ 1, there is a greater index k ≥ n such that ω ∈ Ak.
So ω /∈ An i.o. if there exists a maximum index N so that ω /∈ Ak for any k ≥ N — that is,
if ω appears in An only finitely often.

Theorem 2 (Borel–Cantelli Lemma).

If
∑∞

n=1 P(An) < ∞, then P(An i.o.) = 0.

If
∑∞

n=1 P(An) = ∞ and (An)
∞
n=1 are independent, then P(An i.o.) = 1.
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Example 2 (Common application of Borel–Cantelli).

Suppose that
∑∞

n=1 P(An) < ∞, where

An := {ω : |Xn(ω)−X(ω)| ≥ ε} .

Then An i.o. is precisely the event that Xn(ω) diverges. By the first Borel–Cantelli lemma,

P(An i.o.) = P
(
lim
n→∞

Xn ̸= X
)
= 0,

which implies that Xn
a.s.→ X.

Example 3 (More examples of almost sure convergence).

• In a discrete-time Markov chain, the proportion of time spent in a state converges a.s. to
the inverse of the expected time it takes to revisit said state (given a few assumptions).

• The asymptotic equipartition property : if Xn are i.i.d. over a finite alphabet, then the
average surprise − 1

n
log2 p(X1, . . . , Xn) converges a.s. to the entropy H(X).

• In machine learning, we can ask if the iterates of the stochastic gradient descent algo-
rithm converge a.s. to the true minimizer of the given function.

2 Convergence in probability

Definition 4 (Convergence in probability).

(Xn)
∞
n=1 converges in probability (i.p.) to X if for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

This is denoted Xn
P→ X.

Example 4 (Convergence in probability but not almost surely).

Let Xn ∼ n · Bernoulli( 1
n
), n ≥ 1 be independent, and let X = 0. Then Xn converges to X

in probability but not almost surely.

Let 0 < ε ≤ 1 without loss of generality. Then the probability of deviation P(|Xn −X| ≥
ε) = 1

n
→ 0, which shows convergence i.p.

However, the events An = {|Xn −X| ≥ ε} are independent, and
∑∞

n=1 P(An) = ∞, so by
the second Borel–Cantelli lemma, Xn in fact diverges almost surely !

Example 1 and Example 4 should tell us to carefully distinguish convergence a.s. and i.p.: the
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assumption of independence is enough to change convergence with probability 1 to divergence
with probability 1. In the other direction, however,

Proposition 1.

Almost sure convergence implies convergence in probability.

The idea behind the proof: An entry is filled if |Xn(ω)−X(ω)| ≥ ε. As n → ∞, the total
filled area P(An) tends to 0 by convergence a.s., so the area of its leftmost column P(Bn)
tends to 0 as well — which is precisely convergence i.p.

Xn Xn+1 Xn+2 · · ·

Ω

∗ ∗ · · ·
∗ ∗ · · ·
∗ · · ·

· · ·
∗ ∗ · · ·
...

Proof. Let Xn
a.s.→ X. For n ≥ 1, we define the events

An := {ω : for some m ≥ n, |Xm(ω)−X(ω)| ≥ ε} ,

Bn := {ω : |Xn(ω)−X(ω)| ≥ ε} .

To show that P(Bn) → 0, it suffices to show that P(An) → 0, because Bn ⊆ An =
⋃

m≥n Bm.
We observe that limn→∞An is defined to be the event that Xn diverges, so by convergence a.s.,
P(limn→∞An) = 0. Then, we are finished by

A1 ⊇ A2 ⊇ A3 ⊇ · · · =⇒ lim
n→∞

P(An) = P
(
lim
n→∞

An

)
= 0.

Convergence i.p. is easier to prove directly from its definition than a.s. convergence. You may
come across several examples in your homework; we will give a more famous example below.

Theorem 3 (Weak Law of Large Numbers).

Let (Xn)
∞
n=1 be as described in the SLLN. Then the sample mean X̄n converges in probability

to the true mean:
X̄n

P→ µ.

The WLLN does hold with greater generality and weaker assumptions than the SLLN, so it can
be more than a corollary of the SLLN and convergence almost surely =⇒ in probability.
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3 Convergence in distribution

Definition 5 (Convergence in distribution).

(Xn)
∞
n=1 converges in distribution (i.d.) to X if for every x ∈ R with P(X = x) = 0,

lim
n→∞

P(Xn ≤ x) = P(X ≤ x).

This is denoted Xn
d→ X. Equivalently,

• Xn
d→ X for integer-valued Xn iff the pmfs pXn converge pointwise to pX .

• Xn
d→ X for continuous Xn if (but not only if) the pdfs fXn converge pointwise to fX .

Convergence i.d. is a weaker form of convergence: “eventually, the values of Xn resemble values
drawn from the distribution of X.” But it says nothing about the actual values drawn from Xn

and X, and in particular their deviations. We illustrate this idea in the following example.

Example 5 (Convergence in distribution but not in probability).

Let X be distributed as any continuous symmetric probability distribution, and let

X2k = X and X2k+1 = −X.

Then Xn
d→ X trivially, but the probability of deviation P(|Xn −X| ≥ ε) oscillates between

0 and some nonzero value, so it cannot converge to 0.

In the other direction, however,

Proposition 2.

Convergence in probability implies convergence in distribution.

The key idea behind the proof: P(|Xn −X| ≥ ε) → 0 allows us to approximate the event
{Xn ≤ x} by {X ≤ x− ε} and {X ≤ x+ ε}.

Proof. Suppose that Xn
P→ X. We can observe graphically that for all n ≥ 1,

P(Xn ≤ x) ≤ P(X ≤ x+ ε) + P(|Xn −X| ≥ ε)

P(X ≤ x− ε) ≤ P(Xn ≤ x) + P(|Xn −X| ≥ ε).

As n tends to infinity, convergence i.p. gives us the inequality

P(X + ε ≤ x) ≤ lim
n→∞

P(Xn ≤ x) ≤ P(X − ε ≤ x).

ε > 0 can be made arbitrarily small, so we have shown that P(Xn ≤ x) → P(X ≤ x).
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The most common example of convergence i.d. is one of the most ubiquitous theorems in
statistics and common justification for the importance of the normal distribution. Similar results
exist for other statistical distributions, such as chi-squared or Student’s t.

Theorem 4 (Central Limit Theorem).

If (Xn)
∞
n=1 are i.i.d. with mean µ and variance σ2, then the standard score of the sample

mean X̄n converges in distribution to the standard normal distribution. That is,

X̄n − µ√
σ2

n

d→ N (0, 1).

At first glance, the following two results of convergence i.d. may appear to contradict the CLT,
but their random variables are not identically distributed. We leave their proofs as discussion
problems or exercises; you may find the following identity helpful.

lim
n→∞

(
1− λ

n

)n

= e−λ.

Theorem 5 (Poisson limit theorem).

Suppose that limn→∞ npn = λ > 0. Then

Xn ∼ Binomial(n, pn)
d→ X ∼ Poisson(λ).

The Poisson limit theorem is also called the law of rare events, and it justifies the use of Poisson
distributions in modelling rare occurrences. Many other situations, including common random
graph models or balls and bins models, also have Poisson limits.

Theorem 6 (Limit of geometric distribution).

Suppose that limn→∞
pn
n
= λ > 0. Then

Xn ∼ Geometric(pn)
d→ X ∼ Exponential(λ).
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4 Convergence in expectation*

Definition 6 (Convergence in expectation).

(Xn)
∞
n=1 converges in expectation, in mean, or in L1 norm to X if

lim
n→∞

E(Xn) = E(X), equivalently lim
n→∞

E(|Xn −X|) = 0.

This is denoted Xn
E→ X.

This mode of convergence is somewhat anomalous for us: we might expect that convergence in
distribution implies the same in expectation, because “expectation is a feature of the distribution.”
However, in general, none of convergence a.s., i.p., or i.d. imply convergence in expectation.

Example 6 (Convergence almost surely but not in expectation).

Consider Xn
a.s.→ X as in Example 1, so that Xn converges i.p. and i.d. to X as well. Then

E(Xn) = n · 1
n
= 1 for every n ≥ 1, yet E(X) = 0, so E(Xn) ↛ E(X).

Expectation is equivalent up to almost sure equivalence, so while Xn
a.s.→ X does imply that

E
(
lim
n→∞

Xn

)
= E(X),

we cannot always exchange the E operator and the lim sign. The key to the divergence above is
that even as the probability of eventual deviation tends to zero, the value of said deviation can
tend much faster to infinity. If instead Xn ∼ 2n · Bernoulli( 1

n
), then E(Xn) =

2n

n
→ ∞!

If we suppose that Xn
a.s.→ X, then there does turn out to be two quite strong conditions that

imply convergence in expectation:

a. Monotone convergence theorem. If 0 ≤ X1 ≤ X2 ≤ X3 ≤ · · · , then Xn
E→ X.

b. Dominated convergece theorem. If there exists Y ≥ 0 with E(|Y |) < ∞ such that
|Xn| ≤ |Y | for all n and |X| ≤ |Y |, then Xn

E→ X.

The convergence of sequences of functions is in general quite complex, and is explored in depth in
fields such as measure theory or functional analysis. We will only state a few relevant, interesting
results without proof.

c. Continuous mapping theorem. If f is continuous, often log or exp, then f preserves
convergence a.s., i.p., and i.d.: if Xn → X, then f(Xn) → f(X) in the same manner.

d. Slutsky’s theorem. If Xn
d→ X and Yn

P→ c for some constant c, then Xn + Yn
d→

X + c, XnYn
d→ cX, and Xn/Yn

d→ X/c.
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e. Convergence in expectation implies convergence in probability.

f. Convergence in distribution implies that if g is bounded and continuous, E(g(Xn)) →
E(g(X)). [Note: g(x) = x is not bounded, so convergence in expectation is not implied.]

g. Convergence in L2 norm implies convergence in L1 norm. In general, convergence in Lp

norm implies convergence in Lq norm for all 1 ≤ q ≤ p < ∞.

Definition 7 (Convergence in Lp).

(Xn)
∞
n=1 converges in Lp norm or in p-norm to X for p ≥ 1 if

lim
n→∞

E(|Xn −X|p) = 0.

This is sometimes denoted Xn
Lp

→ X.

A particular Lp space, the Hilbert space of random variables H = L2(Ω;R), will resurface and
feature prominently in later notes to solve several problems in estimation.

■
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