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1 Introduction to random processes

Now having seen the foundations of probability theory — probability spaces, random variables
and distributions, expectation and related functions — we can finally introduce the second part
of this course’s title, random processes.

Definition 1 (Random process).

A random process or stochastic process is an indexed family of random variables. Formally,
let (Ω,F ,P) be a common probability space, let (S,Σ) be a measurable space of values, and
let T be an indexing set. Then a T -indexed S-valued random process is a family

{Xt : Ω → S}t∈T .

T is commonly N to represent discrete time or R≥0 for continuous time.

The definition above is incredibly general, so virtually every natural phenomenon or system with
randomness can be modelled by some random process. Independent and identically distributed
collections of random variables are the simplest example of random processes, but these are far
less interesting than processes that introduce some dependence.

Markov processes describe the simplest form of dependence: ∗ → ∗ → · · · , in which a state
depends only on its previous state. They thus describe systems and situations that are “predictably
random,” encompassing random walks, Brownian motion, and Poisson processes. We will focus
mostly on Markov processes, giving a short list of other common random processes* below.

• Queueing networks describe random arrivals to and departures from one or more queues.

• Martingales describe the winnings of betting on a game fair in expectation.

• Counting processes describe the number of occurrences, e.g. arrivals, over time.

• Branching processes describe the size of a population through reproduction.
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2 Introduction to dynamical systems

A system or dynamical system is, roughly speaking, something that evolves over time. Much of
the terminology for random processes is shared with dynamical systems.

Definition 2 (Terminology of dynamical systems).

a. A system has state, a complete characterization of the system at any particular moment
in time, and dynamics or transitions, rules that describe how the system changes from
one state to a next state over time.

b. The state space S of a system is the collection of all possible states it can take on.
We assume that S is countable, so without loss of generality S ⊆ N.

c. A discrete-time system has time steps n ∈ N, and a continuous-time system has
times t ∈ R≥0. In both cases, x0 ∈ S is the initial state or starting state.

d. The history or trajectory of a system at time t is the collection of states (xs)s<t. We
may also refer to past states, the present state, or future states. In discrete-time
systems, xn−1 and xn+1 are the immediate past and immediate future respectively.

e. A system is time-homogeneous or time-invariant if its dynamics do not change over
time. We will assume that systems are time-homogeneous throughout.

f. A system is stationary, at equilibrium, in steady state, or simply invariant if its state
does not change over time. Stationarity will be a major behavior of interest for us.

g. A deterministic system is one whose behavior is fully determined given a starting state
and the dynamics. A non-deterministic system is random or stochastic.

Characterizations of deterministic discrete-time systems lead nicely into those of random systems.

Example 1 (Dynamics function).

Let x0 ∈ S be a starting state, let f : S → S be a dynamics function, and set xn+1 = f(xn)
for every n ≥ 1. If the state space is S = Rd and the dynamics are a linear transformation,
then the system is also given the matrix-vector equation xn+1 = Axn.

The k-step evolution is given by xn+k = (f ◦ k· · · ◦ f)(xn), or more familiarly xn+k = Akxn.
The steady-state behavior is given by any fixed points f(x) = x, or any eigenvectors v = Av
with eigenvalue 1. Note that xn+1 is determined by xn regardless of x(n−1) = (x0, . . . , xn−1).

Example 2 (Particle on a graph).

Let the state space S also be the vertex set of a graph, where an edge (i, j) exists iff j = f(i)
is a transition of the system. Equivalently, let the edge weight of (i, j) be 1{j=f(i)} in {0, 1}.
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Then the present state is the position of a particle which starts at x0 and jumps to the vertex
xn+1 = f(xn) at every time step n ≥ 1.

Here, the trajectory is the path or sequence of edges taken by the particle, and steady-state
behavior is when the particle remains stationary at one state.

3 Four characterizations of Markov chains

3.1 Sequence of random variables

Definition 3 (Discrete-time Markov chain; Markov property).

A discrete-time Markov chain (DTMC), or simply Markov chain (MC), is a sequence of
S-valued random variables (Xn)n∈N that satisfies the Markov property:

P(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 | Xn = xn)

for every n ∈ N and every feasible sequence of states (x0, . . . , xn) with nonzero probability.

The Markov property is often intuitively described as

“Given the present, the future is unaffected by knowledge about the past.”

Or, “the future is dependent only on the present.” Take care not to overextend this intuition —
it is a statement of conditional independence, not independence.

The Markov property is sometimes also called memorylessness, as the system has no “memory” of
its history when transitioning to future states. We will later find interesting connections between
the Markov property and the memorylessness of the Geometric and Exponential distributions.

Definition 4 (Time homogeneity; transition probabilities).

A Markov chain is time-homogenous, time-invariant, or temporally homogeneous if for
every time step n ∈ N, time shift k ∈ N, and states i, j ∈ S,

P(Xn+1 = j | Xn = i) = P(Xn+k+1 = j | Xn+k = i).

An apparently weaker but equivalent condition is

P(Xn+1 = j | Xn = i) = P(Xn+2 = j | Xn+1 = i).

The transition probabilities pi,j = p(i, j) := P(Xn+1 = j | Xn = i) thus well-defined as
quantities independent of time. We can also define the k-step transition probabilities

p(k)(i, j) := P(Xn+k = j | Xn = i).
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One of the most important consequences of the Markov property is as follows.

Proposition 1 (Probability of a sequence of states I).

The one-step transition probabilities fully determine the probability of any sequence of states:

P(Xn = xn, . . . , X1 = x1 | X0 = x0) = p(x0, x1) · · · p(xn−1, xn).

The proof is left as an exercise in the chain rule for intersections and the Markov property. Then,
generalize the statement above using time-homogeneity.

Proposition 2 (Backwards Markov property).

Every Markov chain satisfies the backwards Markov property:

P(X0 = x0 | X1 = x1, . . . , Xn = xn) = P(X0 = x0 | X1 = x1)

for every n ∈ Z+ and every feasible sequence of states (x0, . . . , xn).

Proof. We proceed by the definition of conditional probability and Bayes’ rule:

P(X0 = x0 | X1 = x1, . . . , Xn = xn) =
P(X0 = x0, X1 = x1, . . . , Xn = xn)

P(X1 = x1, . . . , Xn = xn)

∗
=

P(X0 = x0) · P(X1 = x1 | X0 = x0) ·
∏n−1

i=1 p(xi, xi+1)

P(X1 = x1) ·
∏n−1

i=1 p(xi, xi+1)

= P(X0 = x0 | X1 = x1).

For notational convenience, we write X(m:n) for (Xm, . . . , Xn), where m may be greater than n.
The backwards Markov property says “the immediate past X0 and future X(2:n) are conditionally
independent given the present,” the reverse side of the coin to the Markov property.

Definition 5 (Reverse transition probabilities).

p̃(i, j) := P(Xn = j | Xn+1 = i) =
P(Xn = j) · P(Xn+1 = i | Xn = j)

P(Xn+1 = i)
.

Proposition 3 (Probability of a sequence of states II).

P(Xn−1 = xn−1, . . . , X0 = x0 | Xn = xn) = p̃(xn−1, xn) · · · p̃(x0, x1).

Definition 6 (Reversed Markov chain).
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Let N be a positive integer, and let Yn := XN−n, so that (Y0, . . . , YN) := (XN , . . . , X0).
Then (Yn)

N
n=0 is the reversed chain of (Xn)n∈N.

The reversed chain is indeed a Markov chain by the backwards Markov property for Xn, but
Yn is not time-homogeneous in general. We will delve further into chains that can “ignore” the
direction of the flow of time in the section on reversibility.

Optionally, let us finish by formally proving a very intuitive claim.

Proposition 4 (“Fragmented memories”).

The future is dependent only on the present, regardless of any knowledge about the past.
Let I ⊆ {0, . . . , n− 1}, and define the (partial) history at times I to be the event{

X(I) = x(i)
}
= {Xi1 = xi1 , . . . , Xik = xik} =

⋂
i∈I

{Xi = xi} .

The null history or event of no information is Ω = {X(∅) = x(∅)}, while the full history or
complete trajectory is {X(0,...,n−1) = x(0,...,n−1)}, such that

Ω ⊇
{
X(I) = x(I)

}
⊇ {X0 = x0, . . . , Xn−1 = Xn−1} .

Then, by the Markov property, the transition probability P(Xn+1 = xn+1 | Xn = xn) is the
same whether given no history, any partial history, or the full history:

p(xn, xn+1) = P(Xn+1 = xn+1 | Xn = xn,Ω)

= P(Xn+1 = xn+1 | Xn = xn, X
(I) = x(I))

= P(Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0).

Proof (Alex Fu). Let Ic = {0, . . . , n− 1} \ I. By the law of total probability, we can take the
summations over all possible values of the unknown nuisable variables X(Ic) to get

P(Xn+1 = xn+1 | Xn = xn, X
(I) = x(I)) =

P(Xn+1 = xn+1, Xn = xn, X
(I) = x(I))

P(Xn = xn, X(I) = x(I))

=

∑
P(X(n+1:0) = x(n+1:0))∑
P(X(n:0) = x(n:0))

∗
=

∑[
p(xn, xn+1)

∏n−1
i=0 p(xi, xi+1)

]∑∏n−1
i=0 p(xi, xi+1)

= p(xn, xn+1).
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3.2 Mass and flow

Definition 7 (Probability mass; probability flow).

The state space S is countable, so at every time step n, a probability distribution over S is
given by the probability mass function

πn(i) := P(Xn = i), i ∈ S.

This is the (probability) mass of state i at time n. Then, the (probability) flow from state
i to state j during time step n is

P(Xn = i,Xn+1 = j) = πn(i) · p(i, j).

In this characterization, we can almost forget any probabilities of a Markov chain, instead treating
one as a network of flows with total mass 1, where p(i, j) describes the proportion of mass in state
i that flows to j. We can thus use intuitive vocabulary like “supporting” mass or “circulating”
mass, and this analogy is strengthened by the following properties.

Proposition 5 (Conservation of mass).

The total mass in the Markov chain is always 1. For every n ∈ N,∑
i∈S

πn(i) = 1.

Proposition 6 (Flow-in).

The total flow into a state is the sum of flows-in from every state — mass has to come from
somewhere, justified by the law of total probability.

πn+1(j) =
∑
i∈S

πn(i) · p(i, j).

Proposition 7 (Flow-out).

The mass in a state always equals the total flow out (though mass can return by self-loop).

πn(i) =
∑
j∈S

πn(i) · p(i, j).

Equivalently, the sum of transition probabilities out of any state is 1. For any i ∈ S,∑
j∈S

p(i, j) = 1.
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3.3 Transition diagram

Definition 8 (Transition diagram).

Every DTMC is uniquely associated to a transition diagram, a directed and weighted graph
possibly with self-loops, but without multiedges. The set of vertices is the state space S, and
an edge (i, j) exists iff the corresponding transition probability p(i, j) is nonzero.

Conversely, any graph that is directed, weighted, possibly with self-loops, without multiedges,
and has edge weights in (0, 1] uniquely determines a DTMC, so we often refer to the transition
diagram of a DTMC as the DTMC itself.

A Markov chain is most commonly visualized as its transition diagram. A realization is given by
a particle traversing the states x0, x1, x2, . . ., at each time step probabilistically choosing its next
position. With a large collection of such particles, the proportion of particles in any given state
approaches the probability mass of the state.

Moreover, the use of transition diagrams allows us to harness the language of graph theory.

Definition 9 (Terminology of transition diagrams).

a. State j is reachable or accessible from state i, denoted i → j, if there exists a path
from i to j in the transition diagram.

b. States i and j communicate, denoted i ↔ j, if they are each reachable from the other.
That is, the vertices i and j are strongly connected.

c. The communicating class or strongly connected component (SCC) [i] of state i is
the collection of all states communicating with i. A communicating class also forms a
subgraph of the transition diagram.

d. The relation of communicating ↔ is also an equivalence relation on the state space.
The communicating classes partition the state space: every state belongs to one and
only one communicating class, which are disjoint from each other.

e. A Markov chain is irreducible if its transition diagram has only one communicating
class (itself) or equivalently is strongly connected. Otherwise, the chain is reducible.
Note that every communicating class is itself irreducible (as a subgraph).

f. Every directed graph is a directed acyclic graph (DAG) of SCCs, so every transition
diagram is also a DAG of communicating classes. A class is a source if no edges lead
into it; a sink or closed if no edges lead out it; and isolated if both are true. A state
is absorbing if no edges lead out of it.

g. A class property is any property that holds the same for every state in a communicating
class — if one state has it, then every state in the class has it. Central examples include
positive recurrence, null recurrence, transience, aperiodicity, and ergodicity.
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A general principle: we will mostly work with class properties in irreducible Markov chains, as any
Markov chain can be decomposed into (irreducible) classes, and the properties of each class can
usually be combined in a straightforward manner.

3.4 Linear stochastic system

Definition 10 (Stochastic vector; row-stochastic matrix).

A stochastic vector is a row vector π with |S| nonnegative real entries which sum to 1:

|S|∑
i=1

π(i) = 1.

A (right- or row-) stochastic matrix is a square matrix P with nonnegative real entries such
that every row is a stochastic vector, or every row sums to 1:

|S|∑
j=1

Pi,j = 1, i = 1, . . . , |S| .

Then a DTMC is uniquely determined by a stochastic matrix-vector equation with probability
distribution vector πn and transition probability matrix P :

πn+1 = πnP.

The ith entry of the row vector πn is equal to the value of the distribution πn at state i,
and the (i, j)th entry in the matrix P is equal to the transition probability p(i, j). Thus the
notation πn(i) = πn(i) and Pi,j = p(i, j) is unambiguous.

Where does the linearity in this “linear” system come from? If we consider a specific entry in the
vector-matrix multiplication,

πn+1(j) = πn · rowj(P ) =
∑
i∈S

πn(i) · p(i, j),

which is precisely the law of total probability or the flow-in equation.

Proposition 8 (Convex combinations of stochastic vectors).

Stochastic vectors are not closed under general linear combinations, because the resulting
entries may not sum to 1. However, if v1, . . . , vn are stochastic vectors, and α1, . . . , αn are
nonnegative coefficients that sum to 1, then the convex combination

α1v1 + . . .+ αnvn

remains a stochastic vector.

Convex combinations will be key in combining distributions over individual communicating classes.
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By induction, πn = π0P
n for every n ∈ N. Thus a Markov chain as a simple random process is

completely specified by |S|2 − 1 values in [0, 1]: the initial distribution requires |S| − 1, and the
transition probabilities require |S|2 − |S|.

Proposition 9 (k-step transition probabilities).

Another nice consequence of the row-stochastic convention is that

p(k)(i, j) = P(Xk = j | X0 = i) = (P k)i,j.

By the law of total probability, summing over all possible values of the nuisance variables
X(1:k−1), or all possible immediate sequences of length k,

p(k)(i, j) =
∑

x(1:k−1)

P
(
Xk = j,X(1:k−1) = x(1:k−1) | X0 = i

)
=

∑
x1,...,xk−1

p(xk−1, j) · p(xk−2, xk−1) · · · p(x1, x2) · p(i, x1)

= (P k)i,j.

Proposition 10 (Chapman-Kolmogorov equations).

For all k, ℓ ∈ N, P k+ℓ = P kP ℓ.

From our setup, this may seem like a simple identity perhaps not worthy of being specially named,
but its underlying importance is that we can compute any (k+ℓ)-step transition probability given
just the k-step and ℓ-step transition probabilities.

We finish with one of many interesting out-of-scope connections between the graph theory and
linear algebra perspectives of Markov chains.

Definition 11 (Irreducible matrix*).

A matrix A is irreducible if there does not exist a permutation matrix Π such that A is
similar to a block upper triangular matrix under conjugation by Π, and reducible otherwise.

Suppose that the transition probability matrix P is reducible, with the permutation matrix given
by the identity I. Then IPI−1 = P is block upper triangular:

P =


[
∗
]

∗
. . .

0
[
∗
]
 .

So there exists a partition of the state space into “blocks,” with zero probability of reaching one
block from another, even if the probability in the other direction is nonzero — the transition
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diagram is reducible! Then, the permutation matrix Π simply permutes the order of states in P
without changing any transition probabilities between states, so we have

Proposition 11 (Equivalence of irreducibilities).

A Markov chain is irreducible if and only if its transition probability matrix P is irreducible.

Continued in part II.

■
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