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1 Introduction to inference

The first two modules of probability and random processes have lived in the realm of descriptive
probability so far — extracting useful information from a given model, a mathematical description
of some part of reality. For instance, we found probabilities given a sample space, conditional
probabilities given an event, expectations given a random variable, moments given a distribution,
class properties given a chain, times given a process, and so forth.

But rarely or almost never will we have a given model in practice, such as a full probability space,
distribution, or Markov chain. Even if we did, no model is a perfect description of reality — the
only unsimplified model is reality itself. What we have access to is partial, imperfect information:
a small, finite number of samples; empirical frequencies of observed outcomes in collected data;
measurements marred with uncertainty, errors, noise, biases, perturbations, or more.

The more realistic inverse problem — determining a model given limited information — is the
subject of inferential probability. Its common goals may seem quite familiar to you: estimation,
approximation, prediction, learning, training, classification, decision, regression, analysis, etc.

Our basic setup for inference is as follows. The random variable X describes some hidden,
latent, or underlying true state of the world, whose exact value or distribution is unknown
to us. The observation Y is partially determined by X, following a given model Y | X,
and partially by some other randomness.

We wish to “reverse” the model Y | X to obtain “X | Y ” somehow. Bayes’ rule tells us that

pX|Y =
pY |X · pX

pY
,

but pX is unknown! Thus our goal is to infer X̂, a function of Y so that X̂ | Y is almost
X | Y . The inferred X̂ is usually optimal in the sense of minimizing a cost, loss, or objective
function, such as a probability P(X ̸= X̂), or a distance ∥X − X̂∥, often mean squared error.
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2 Definitions

Definition 1 (Setup for binary hypothesis testing).

Let X ∈ {0, 1} represent a choice between two hypotheses: the two distributions of the
null hypothesis H0 and the alternative hypothesis H1. A single observation Y ∈ R is given,
where Y ∼ H0 if X = 0 and Y ∼ H1 if X = 1.

We want to infer an optimal test or decision rule X̂ = r(Y ), which assigns 0 or 1 to every
y ∈ R for which distribution y is more likely to have been drawn from. The assignments of
r(y) = 0 or r(y) = 1 are failing to reject or rejecting the null hypothesis respectively.

The most common probabilities associated with hypothesis testing are

• The probability of type I error, false alarm (PFA), or false positive is the probability
of incorrectly rejecting the null hypothesis,

α := P(X̂ = 1 | X = 0) = PH0(X̂ = 1).

• The significance level α∗ ∈ [0, 1] is a preset upper bound on the PFA, often 0.05. It
should be lower when false alarms, such as false diagnoses of cancer, are more “costly.”

• The probability of type II error, miss rate, or false negative rate is the probability
of failing to rejecting an incorrect null hypothesis,

β := P(X̂ = 0 | X = 1) = PH1(X̂ = 0).

• The probability of correct detection (PCD) or power of a test is the probability of
correcting rejecting an incorrect null hypothesis,

1− β = P(X̂ = 1 | X = 1) = PH1(X̂ = 1).

Our optimization problem is to find the test which maximizes PCD given a constrained PFA:

r∗ = argmax
r : R→{0,1}

P(r(Y ) = 1 | X = 1) s.t. P(r(Y ) = 1 | X = 0) ≤ α∗

Definition 2 (Rejection region; acceptance region).

An equivalent characterization of a decision rule r is in terms of the rejection region

R := {y ∈ R : r(y) = 1} ,

the values of Y for which the test rejects the null hypothesis. Its complement, the acceptance
region A = Rc, works equally well.
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Example 1 (Motivating examples for terminology).

The null hypothesis has its name because it is typically the hypothesis of no effect, also called
a negative result: a lack of cancer, fire, or defect. The alternative hypothesis often describes
a positive result, which may be undesirable: the presence of cancer, fire, or defect. The test
or alarm tries to detect a positive result, and either hits or misses.

We work conservatively, as if the null hypothesis is true, until there is strong enough evidence
to reject the null, usually a significant positive result, for which PH1(result) is far more likely
than PH0(result). We will never “accept” the null hypothesis as true, only fail to reject it due
to a lack of significant evidence pointing to the alternative hypothesis.

An important class of hypotheses involves a bit of confusing notation (to us). Let Θ be a space
of parameters, and let θ∗ be the true parameter by which the observation X ∼ P(X = x; θ∗)
is drawn. Then the hypotheses are H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, where Θ0 and Θ1 partition
Θ. We work with simple hypotheses, where Θ0 = {θ0} and Θ1 = {θ1}, so HX : θ = θX .

An example is visualized below. Here, the two simple hypotheses are H0 : µ = −1 and H1 : µ = 1.
The PFA and PCD of an arbitrary rejection region are the highlighted areas under the distributions
of H0 and H1 respectively.

−1 1

H0 H1

PCD

PFA

Y

Figure 1: A binary hypothesis test.

We find that the region of overlap characterizes the conflict of binary hypothesis testing: greater
rejection of the null X̂ = 1 increases PCD, but at the same time increases PFA. So a good test
should selectively or greedily reject the null, favoring observations y that increase the PCD far
more than they increase the PFA, which motivates the likelihood ratio.
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3 The Neyman–Pearson likelihood ratio test

Definition 3 (Likelihood ratio).

The likelihood ratio of the observation Y ∈ R is the function

L(y) :=
PH1(y)

PH0(y)
=

fY |X(y | 1)
fY |X(y | 0)

,

the ratio between the probability that the value y is sampled from H1 to the probability that
y is sampled from H0.

A natural starting point for X̂ is the MLE: we reject the null at values for which fY |X(y | 1) >
fY |X(y | 0), or L(y) > 1. But a key problem is that we need fine control over α ≤ α∗, as α∗ is
any significance level in [0, 1]. As the PCD increases with the PFA, we can always try to achieve
the maximum α = α∗ without any loss of generality.

So, we want the possible values of α of the test to range over [0, 1], but the MLE does not allow
us this level of control. Instead, we can consider a threshold test:

r(y) =

{
1 if L(y) > λ

0 otherwise,

which has a threshold parameter λ ∈ R we can set depending on α∗. For instance, the MAP of
X is a threshold test: if π is a prior distribution on X, then

X̂MAP = 1{PH1(y) · π(1) > PH0(y) · π(0)} = 1

{
L(Y ) >

π(0)

π(1)

}
.

In general, it seems that a threshold test allows us to freely set α as

α = P(r(Y ) = 1 | X = 0) = P(L(Y ) > λ | X = 0).

But one problem arises when L(Y ) is discrete: even as λ ∈ R varies smoothly, the corresponding
values of α will jump up and down discretely. For instance, consider the trivial example H0 = H1

and α∗ = 0.5, in which L(Y ) = 1 and α ∈ {0, 1}. This motivates randomization at the threshold :

r(y) =


1 if L(y) > λ

Bernoulli(γ) if L(y) = λ

0 if L(y) < λ

for some randomization constant γ ∈ [0, 1]. The choices of γ = 0 or 1 bring us back to the
simple threshold test, but let us see why randomization works more generally.

Consider the typical problematic scenario:

PH0(L(Y ) > λ) < α∗ < PH0(L(Y ) ≥ λ),
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so no choice of λ in a simple threshold test will allow us to set α = α∗ and maximize PCD. So,
let us first approximate α∗ as closely as we can without exceeding it:

λ∗ := argmax
λ∈R

α(λ) s.t. α(λ) ≤ α∗

= inf {λ : α(λ) ≤ α∗} .

For convenience, we write α(λ) := PH0(L(Y ) > λ) for the value of α given by the choice of λ.
If α(λ∗) = α∗ already, then we are done! Otherwise, we have found the threshold λ∗ at which

α(λ∗) + 0 · PH0(L(Y ) = λ∗) < α∗ ≤ α(λ∗) + 1 · PH0(L(Y ) = λ∗),

the same scenario we started with. α∗ must fall in one of these intervals, and now we can use
randomization to interpolate to “fill the gap” between α(λ∗) and α∗:

γ =
α∗ − α(λ∗)

PH0(L(Y ) = λ∗)
∈ (0, 1].

Let us verify that we have achieved our initial goal: to be able to set α = α∗ for any α∗ ∈ [0, 1].
If we find the threshold λ = λ∗ and randomization constant γ as above, then

α = PH0(r(Y ) = 1)

= PH0(L(Y ) > λ) + PH0(L(Y ) = λ, Bernoulli(γ) = 1)

= PH0(L(Y ) > λ) + γ · PH0(L(Y ) = λ)

= α∗.

For good measure, we can also find the rejection region of the test as

R = {y : L(y) > λ} ∪ {y : L(y) = λ ∧ Bernoulli(γ) = 1} .

What was the point of the above? Well, we have just derived the optimal hypothesis test.

Theorem 1 (Neyman–Pearson lemma).

The Neyman–Pearson likelihood ratio test is the uniformly most powerful test among all tests
with significance level at most α∗. That is, the solution to

r∗ = argmax
r : R→{0,1}

P(r(Y ) = 1 | X = 1) s.t. P(r(Y ) = 1 | X = 0) ≤ α∗

is a threshold test with randomization,

r∗(y) =


1 if L(y) > λ

Bernoulli(γ) if L(y) = λ

0 if L(y) < λ

for some threshold λ ∈ R and randomization constant γ ∈ [0, 1].
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In other words, let α = PFA(r∗) and 1− β = PCD(r∗). If r′ has rejection region R′ and

α′ = PFA(r′) = PH0(Y ∈ R′) ≤ α

1− β′ = PCD(r′) = PH1(Y ∈ R′),

then 1− β′ ≤ 1− β. Furthermore, r∗ is the unique optimal test with PFA α, so that α′ < α
implies 1− β′ < 1− β, or r′ is strictly less powerful.

Proof. Let R be the rejection region of r∗. We wish to show that

PH1(Y ∈ R) ≥ PH1(Y ∈ R′),

or equivalently, after subtracting the probability of the common region Y ∈ R ∩R′,∫
R\R′

L(y) · PH0(y) dy ≥
∫
R′\R

L(y) · PH0(y) dy.

We know that L(y) ≥ λ on R and L(y) < λ on Rc by the definition of R. Moreover,∫
R

PH0(y) dy = α ≥ α′ =

∫
R′
PH0(y) dy.

Then we are done after subtracting PH0(R ∩R′) from both α and α′.

PH1(R \R′) ≥ λ · PH0(R \R′) ≥ λ · PH0(R
′ \R) ≥ PH1(R

′ \R).

Now suppose that r′ is another optimal test with α′ = α, so then β′ = β, and∫
R
(r∗(y)− r′(y)) · (PH1(y)− λ · PH0(y)) dy = (β − λ · α)− (β′ − λ · α′) = 0.

By the definition of r∗, the integrand is nonnegative, so r∗(y)− r′(y) ̸= 0 is only possible on the
event {L(Y ) = λ} = {y : PH1(y)− λ · PH0(y) = 0}. If it has zero probability, then r∗ = r′ a.s.;
otherwise, the randomization constants must also agree, so r∗ = r′ a.s., proving uniqueness.

Lastly, a technical note: Bernoulli(γ) is a random variable defined only on the event {L(Y ) = λ}
and independent of X, so that the chain rule behaves as expected.

PH0(L(Y ) = λ, Bernoulli(γ) = 1) = PH0(L(Y ) = λ) · PH0(Bernoulli(γ) = 1 | L(Y ) = λ)

= PH0(L(Y ) = λ) · γ.

So with randomization, the rejection region R is not necessarily uniquely determined.

The constraint PH0(L(Y ) > λ) + γ · PH0(L(Y ) = λ) ≤ α∗ now appears to depend on two
unknowns, λ and γ, but the derivation above also gives us a useful procedure to determine both
parameters from one inequality by first setting γ = 0.
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1. Find the likelihood ratio L.

2. Find the threshold λ without randomization.

3. Find the randomization constant γ if the PFA is still less than α∗.

4 Examples

L(y) is often difficult to analyze, so we want to find a simpler equivalent condition to L(y) > λ.
We can do so when L(y) is monotonic: {L(Y ) > λ} is equivalent to {Y > t}, or {Y < t}, whose
probability is known from the distribution of Y given in the hypotheses.

Example 2 (Normal hypotheses).

Let Y ∼ N (X, σ2), and let α∗ ∈ [0, 1]. Then, let us first find the likelihood ratio:

L(y) =
fY |X(y | 1)
fY |X(y | 0)

= exp

(
−(x− 1)2

2σ2
+

x2

2σ2

)
= exp

(
2x− 1

2σ2

)
.

We now observe that L(y) is monotonically increasing: as H1 is “to the right of” H0, a larger
observed value gives a higher likelihood of Y ∼ H1. If the two hypotheses were swapped, L(y)
would instead be monotonically decreasing. In any case, the likelihood ratio test becomes

r∗(Y ) = 1{Y > t}

for some threshold t ∈ R. There is no randomization in the continuous case, as P(Y = t) = 0
for every t ∈ R. Then the optimization problem becomes

argmax
t∈R

1− Φ

(
t− 1

σ

)
s.t. 1− Φ

(
t− 0

σ

)
= α∗

after expanding α = PH0(Y > t) and 1− β = PH1(Y > t). We are done after finding

t = σ · Φ−1(1− α∗).

Randomization is quite likely to appear in the case of discrete hypotheses.

Example 3 (Categorical hypotheses).

Let H0 and H1 be the categorical distributions (0.2, 0.3, 0.5) and (0.8, 0.1, 0.1) respectively,
for the probabilities of drawing a red, green, or blue marble out of a jar, and let α∗ = 0.25.
We observe that the likelihood ratio is a discrete function of Y :

L(y) =


4 if y = red
1
3

if y = green
1
5

if y = blue.
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We also observe that for discrete likelihood ratios, the choice of the threshold λ is without
loss of generality from the values taken on by L(y). For instance, λ = 2 defines almost the
same rule as λ = 1

3
, except without randomization, the finer control we need.

Then, setting λ = 1
3

and λ = 1
5

result in the respective PFAs of

PH0(Y = red) = 0.2

PH0(Y ∈ {red, green}) = 0.5.

As 0.2 < α∗ < 0.5, we take λ = 1
3

and introduce randomization. We need

PH0(Y = red) + γ · PH0(Y = green) = α∗,

from which we get γ = 1
6
. To see the effect of randomization, we can find the PCD with and

without randomization:

PH1(Y = red) + γ · PH1(Y = green) = 0.8 +
1

6
· 0.1

PH1(Y = red) = 0.8.

The final example of tuning γ is also an example of a test optimal in the Neyman–Pearson sense,
but nonoptimal in that it needlessly increases the PFA without increasing the PCD, in the case
of α∗ > 1

2
. This demonstrates a problem with setting α = α∗ in general: if the hypotheses have

no overlap, then a clean boundary with PFA = 0 and PCD = 1 is the clear better choice over an
overreactive Neyman–Pearson test that sets PFA = α∗ and PCD = 1.

Example 4 (Tuning the randomization constant).

Let H0 : Y ∼ Uniform([−1, 1]) and H1 : Y ∼ Uniform([0, 2]), and let α∗ be given.

L(y) =
1{0 ≤ y ≤ 2}
1{−1 ≤ y ≤ 1}

takes values in {0, 1,∞}, in particular on [−1, 0), [0, 1], and (1, 2] respectively.

a. In the case of λ = 0, we find 1
2
+ 1

2
γ = α∗.

b. In the case of λ = 1, we find 1
2
γ = α∗.

c. In the case of λ = ∞, we find the (mostly unsatisfiable) equation 0 = α∗.

So, the Neyman–Pearson test sets λ = 1 and γ = 2α∗ for 0 ≤ α∗ ≤ 1
2
, and sets λ = 0 and

γ = 2(α∗− 1
2
) for 1

2
≤ α∗ ≤ 1. By the remark above, the threshold λ = 0 creates extraneous

false alarms, which means that significance levels α∗ > 1
2

do not make sense here.

We can describe this Neyman–Pearson test equivalently and more explicitly by its acceptance
or rejection of the null for each of Y ∈ [−1, 0), Y ∈ [0, 1], and Y ∈ (1, 2].
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We have far from given a complete introduction to hypothesis testing, which is studied further
in statistics. We encourage the reader to look further into one-tailed tests, two-tailed tests, and
Bayesian testing if interested. For now, we leave with the following challenge: generalize the
Neyman–Pearson test to n i.i.d. observations Y1, . . . , Yn.
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