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Preface

These course notes are intended to be a reference for most of the content in this course. However,
please keep in mind that they may not include all of the material that is considered in scope —
homeworks, discussions, labs, and the current semester’s lectures. These notes may also contain
some interesting but out-of-scope material, which will be indicated using an asterisk (*).

1 Axioms

Definition 1 (Probability space; Kolmogorov’s axioms).

A probability space (Ω,F ,P) consists of a sample space Ω, a set of outcomes; an event
space F , a σ-algebra on Ω; and a probability measure P, which assigns values in [0, 1] to
events in F . Every probability space satisfies three axioms:

1. Nonnegativity. P(A) ≥ 0 for every event A ∈ F .

2. Unit measure. P(Ω) = 1.

3. Countable additivity. For any countable collection of disjoint events {Ai}∞i=1,

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Note that countable means finite or countably infinite.

Definition 2 (σ-algebra; event).

A σ-algebra or σ-field F on a set Ω is a nonempty collection of subsets of Ω that is closed
under complements, countable unions, and countable intersections. A subset A ⊆ Ω is an
event if and only if A ∈ F . Every σ-algebra satisfies three axioms:
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1. Nonemptiness. Ω ∈ F .

2. Closure under complements. If A ∈ F , then Ac ∈ F .

3. Closure under countable unions. If A1, A2, A3, . . . ∈ F , then
⋃∞

i=1Ai ∈ F .

The rest of this section will be devoted to explaining the definitions above. These fairly concise
conditions summarize a great deal of insight into our understanding and application of probability,
but they certainly can seem quite arbitrary without explanation.

1.1 The sample space Ω

Choice of sample space. The sample space is the basis of probability: there is randomness or
uncertainty precisely because there may be multiple possible outcomes, points, or samples. For
example, we could set Ω = {heads, tails} for a simple coin flip experiment, or we could set
Ω = {all possible states of the universe}. Naturally, we would like to choose the simpler sample
space for modelling, so Ω is commonly finite, N, Z, or R.

Limitations of fixed sample spaces. The probability space does force us to somehow “know” all of
the possible outcomes beforehand when modelling situations. Otherwise, we may need to add a
special outcome ω∗ for “any unknown outcome,” creating slightly unwieldly models. It may also
seem difficult to modify sample spaces with dynamic information, like finding new outcomes or
rejecting old outcomes. Fortunately, we will soon see a remedy in conditional probability.

1.2 Events A ∈ F

Why is an event a set of outcomes? An event intuitively describes determinable or measurable
information, something whose probability we wish to determine. A more natural definition of
an event might be a function E : Ω → {does not happen, happens} or E : Ω → {0, 1}.

Definition 3 (Indicator function).

The indicator function 1A : Ω → {0, 1} of a subset A ⊆ Ω is

1A(ω) =

{
1 if ω ∈ A

0 otherwise.

Importantly, there is a bijection between subsets A ⊆ Ω and functions Ω → {0, 1}.

So, an event is just as well described by a subset {ω : E(ω) = 1} as a function E : Ω → {0, 1},
and subsets provide a simpler definition. The correspondence A ↔ 1A will still be important: it
allows us to translate between events and random variables, a key identity being P(A) = E(1A).

Why do we need events? Or, why assign probabilities to events and not outcomes? Well, there
is an easy way to reconcile the probability measure P : F → [0, 1] with our original formulation
involving the probability function p : Ω → [0, 1]:
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Definition 4 (Probability of an outcome).

P(ω) := P({ω}), if the singleton set {ω} is an event in F .

So, events give us more generality. Measuring the probability of events also more closely reflects
reality: for instance, a noisy sensor cannot tell us its exact reading, but it can tell us an approximate
range of readings. Or, many underlying outcomes result in the event A = {device stops working},
but we only have access to a single indicator light. In this case, F = {∅, A,Ac,Ω} more closely
reflects what we can determine — P(A), but not the probability of any individual outcome.

Definition 5 (Special events).

a. An event happens almost never if it has probability 0. Such an event is also called a
null set or set of measure zero.

b. An event happens never if it is equal to the empty set ∅.

c. An event happens almost surely (a.s.), almost certainly, or almost always if it has
probability 1.

d. An event happens surely if it is equal to the sample space Ω.

Events of probability 0 and 1 . A common misconception is that events with probability 0 are
impossible, and events with probability 1 are certain to happen. A common miscorrection is
that events with probability 0 are still possible, only unobservable. Both can be true in practice:
impossible events, like a coin with two tails sides landing on heads, do have probability 0, but we
can be more careful.

An event A is impossible if it happens on no outcomes, i.e. if it is equal to ∅. However, almost
never is not never: P(A) = 0 may not imply that A = ∅. For example, randomly choose a real
number in [0, 1]. The probability that you chose the number you did is 0, but this was neither
impossible nor unobservable — it just happened, and you just observed it!

So, a better term than “impossible” or “unobservable” is negligible. An event that almost never
happens is still possible to observe, but its probability is so low that we can treat it as if it never
happens. This is really part of a broader measure-theoretic philosophy:

Events with probability measure zero are most often negligible — we only care about an event
happening up to almost surely.

For a similar example, the integral of f(x) over [a, b] is the same as the integral over (a, b):
the endpoints a and b have zero length, so they are negligible to the integral. There is always
uncertainty in life — we cannot always be sure of events like {X = Y } in every possible outcome,
so the best we can do is to have X = Y on all but a negligible set of outcomes. “In probability,
the most sure we can be is almost sure.”
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1.3 The event space F

Why is a σ-algebra defined the way it is? If events represent “measurable information,” then the
event space represents “all measurable information.” So nonemptiness, or Ω,∅ ∈ F , means that
we can always measure P(Ω) and P(∅). Closure under complements means that if we can find
P(A), i.e. A ∈ F , then we can also determine P(not A). Closure under unions and intersections
means that the events {A or B} and {A and B} can be measured if A and B can.

Why countable unions and countable additivity? There are some who define probability spaces
to have only finite additivity. But, countable additivity allows us to have countable sample spaces
like N, where we should be able to find the probability of each outcome:

∞⊔
i=1

{ωi} = Ω =⇒
∞∑
i=1

P(ωi) = 1.

However, uncountable sample spaces can have subsets with length, area, volume, or even n-
dimensional hypervolume, which become more complicated than just adding the probabilities of
points. In a previous example, if there was uncountable additivity, then each outcome in [0, 1]
has probability 0, but the sample space [0, 1] has probability 1:∑

ω∈[0,1]

P(ω) = 0 ̸= 1 = P([0, 1]).

Why not just use the power set 2Ω? If Ω is countable, then the most common choice of F is
indeed 2Ω, because the power set is a σ-algebra. However, for uncountable sample spaces like
Ω = R, there can exist pathological nonmeasurable sets, which cannot have a probability at all
— any attempt to define their probability results in contradiction due to axioms of set theory.

Definition 6 (Borel σ-algebra).

The Borel σ-algebra on R, denoted Borel(R) or B(R), is the minimal σ-algebra that contains
all of the open and closed intervals of R. In particular, Borel(R) contains all intervals of the
form (−∞, x], and all singleton sets {x}.

If Ω = R, then the σ-algebra F will be taken to be Borel(R) ⊂ 2R, unless otherwise stated.

1.4 The probability measure P

Where do we get the probability values from in the first place? After all, the probability space
axioms seem to assume that we already have some P : F → [0, 1]. One starting place is,
naturally, symmetry : every outcome gets the same probability. There is a major problem: there
is no uniform measure over any countable sample space. (See if you can show this by countable
additivity.) We could instead choose common distributions to model natural patterns, or use
relative frequencies or prior probability: see the following paragraph.

Interpretations of probability. There are at least two major schools: the frequentist view that
probability is empirical frequency, the proportion of occurrences over infinitely many trials, and the
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Bayesian view that probability is degree of belief, a subjective measure involving prior information
and incorporating evidence. This philosophical discussion is far from resolved, but we can sidestep
it for now: the axiomatic definition of probability spaces is interpretation-independent!

2 Consequences

You may not need all of the following identities in this course, but they are here for your reference.

a. Empty set. P(∅) = 0.

b. Complement. P(Ac) = 1− P(A).

c. Set difference. P(A \B) = P(A)− P(A ∩B).

d. Symmetric set difference (exclusive or). P(A△B) = P(A)+P(B)− 2P(A∩B).

e. Monotonicity (subset). A ⊆ B =⇒ P(A) ≤ P(B), but not the converse.

f. Law of total probability (partition). If {Bi}∞i=1 is a countable partition of the event
B, possibly B = Ω, then

P(A ∩B) =
∞∑
i=1

P(A ∩Bi).

g. Union bound (union I). The following inequality known as countable subadditivity
holds in general, with equality if and only if the union is disjoint:

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai).

h. Principle of inclusion-exclusion (union II). P(A∪B) = P(A)+P(B)−P(A∩B).
In general, for any finite collection of events Ai,

P

(
n⋃

i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

I⊆{1,...,n}
|I|=k

P

(⋂
i∈I

Ai

) .

i. De Morgan’s laws (union ↔ intersection). P(A ∪ B) = 1 − P(Ac ∩ Bc); dually,
P(A ∩B) = 1− P(Ac ∪Bc). In general, for any countable collection of events Ai,

P

(
∞⋃
i=1

Ai

)
= 1− P

(
∞⋂
i=1

Ac
i

)
and P

(
∞⋂
i=1

Ai

)
= 1− P

(
∞⋃
i=1

Ac
i

)
.
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j. Continuity from below. If An ↑ A, then P(An) ↑ P(A). That is,

if A1 ⊆ A2 ⊆ A3 ⊆ · · · and lim
n→∞

An :=
∞⋃
n=1

An = A,

then P(A1) ≤ P(A2) ≤ P(A3) ≤ · · · and lim
n→∞

P(An) = P
(
lim
n→∞

An

)
= P(A).

k. Continuity from above. Likewise, if An ↓ A, then P(An) ↓ P(A). That is,

if A1 ⊇ A2 ⊇ A3 ⊇ · · · and lim
n→∞

An :=
∞⋂
n=1

An = A,

then P(A1) ≥ P(A2) ≥ P(A3) ≥ · · · and lim
n→∞

P(An) = P
(
lim
n→∞

An

)
= P(A).

The proofs of the above identities are fairly short and reasonable, so I leave them as exercises to
you (I know, I know) in applying the probability axioms. Here are a few hints to get you started:

0. Venn diagrams are a great place to start for all of these identities: probability has a really
nice interpretation as area, so visualization can be incredibly helpful.

1. Countable additivity implies finite additivity, the weaker condition that the probability of any
finite disjoint union is the sum of the individual probabilities: we can just take the countable
collection A1, A2, . . . , An,∅,∅, . . ..

2. Disjoint unions with finite additivity will be your friend. Are any of the following — an event
and its complement; A and B \A; A△B := (A \B)∪ (B \A); any partition — disjoint?
If so, what are their unions?

3. The union bound uses a sweet idea: we can disjointize any countable union! Consider the
events Bn = An \ (

⋃n−1
i=1 Ai). Are they disjoint, and what is

⋃n
i=1Bi? See if you find any

interesting parallels to the Gram–Schmidt procedure for removing linear dependence.

4. The formula for inclusion-exclusion certainly seems intimidating, but its underlying idea is not
so much: we inductively apply the case of n = 2 to avoid overcounting certain intersections:

P

(
n⋃

i=1

Ai

)
=
∑
size 1

P(Ai)−
∑
size 2

P(Ai ∩ Aj) +
∑
size 3

P(Ai ∩ Aj ∩ Ak)− · · · .

5. The final two identities say that probability has monotone continuity : it preserves monotone
limits, which are limits of increasing or decreasing sequences. We cannot always exchange
the lim sign and P like we did, but what about A1 ⊆ A2 ⊆ · · · seems to make it possible?

Disjointization may come in handy again. This time, the events Bn can be visualized as the
shells of Russian nesting dolls, and the sums of their probabilities experience some beautiful
telescoping cancellation. Then, can we reduce continity from above to that from below?
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There is a great deal more to explore: the Bonferroni inequalities; countable intersections and
unions of special events; upper and lower bounds on probabilities of intersections; generators of
σ-algebras; product spaces; the language of measure theory; alternative axiomizations. However,
these topics are wildly out of scope, and thus left only to the interested reader.

For now, we will take a closer look at the interpretation of “events as information,” and in the
process find another method of finding the probabilities of intersections, as well as a graphical
model for dependencies between events.

■
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