
Note 10. Information theory II

Alex Fu

Fall 2022

6 Source coding

Let us now return to the two central questions of communication. Shannon’s key insight was
that the two steps of source coding and channel coding can be designed separately, and together
still achieve the optimal rate of transfer of information.

6.1 Lossless compression

Definition 1 (Source coding scheme; message; length).

A source coding scheme is a function S → {0, 1}∗ from the source alphabet to all possible
binary strings of finite length.

A message is a sequence of symbols (x1, . . . , xn). The probability of observing a message is

pX(n)(x1, . . . , xn) =
n∏

i=1

pX(xi),

and the length of a message len(x1, . . . , xn) is the number of bits in its encoded sequence.

The goal of lossless compression is to minimize E(len(x1, . . . , xn)), with the condition that
given an encoded or compressed sequence of bits, the original message can still be recovered.

The key result: the entropy of X is a fundamental asymptotic lower bound on the average
number of bits per symbols to which any source coding scheme can compress a message. For
a sense of where H(X) comes from, by the LLN, a “typical message” has probability

p(x1, . . . , xn) =
n∏

i=1

pnpii =
n∏

i=1

2npi log2(pi) = 2
∑n

i=1 npi log2(pi) = 2−nH(X).

1

6.2 Source coding theorem

The proofs in the following derivation will be left to you as homework.

Proposition 1 (Asymptotic equipartition property).

Asymptotically, the probability mass of the set of all possible sequences is concentrated on a
subset partitioned into 2nH(X) sequences, each with equal probability 2−nH(X):

lim
n→∞

− 1

n
log2 p(x1, . . . , xn)

a.s.
= H(X).

Definition 2 (Typical set).

Let ε > 0. The typical set of sequences of length n is

A(n)
ε :=

{
(x1, . . . , xn) ∈ Sn : 2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε)

}
.

In what sense is the typical set A(n)
ε typical?

Proposition 2 (Asymptotic typicality).

For all sufficiently large n,

P
(
A(n)

ε

)
= P

(
(x1, . . . , xn) ∈ A(n)

ε

)
> 1− ε.

Moreover, the typical set can be exponentially smaller in size than the set of all sequences Sn:

Proposition 3 (Size of the typical set).

For all sufficiently large n,

(1− ε) · 2n(H(X)−ε) ≤
∣∣A(n)

ε

∣∣ ≤ 2n(H(X)+ε).

Furthermore, the typical set cannot be any smaller:

Proposition 4 (Minimality of the typical set).

Let δ > 0, and let B(n)
δ be of size at most 2n(H(X)−δ). Then, for all sufficiently large n,

P
(
B

(n)
δ

)
= P

(
(x1, . . . , xn) ∈ B

(n)
δ

)
< δ.

There may appear to be a slight contradiction between Proposition 3 and 4; how does the order
of choosing δ and ε resolve this?

2

The final main result, due to Shannon, allows us to interpret entropy as the expected information
content of a distribution — information is lost if compression goes below the entropy.

Theorem 1 (Source coding theorem).

Any sequence of symbols can be losslessly compressed such that asymptotically, the expected
number of bits per symbol is arbitrarily close to the entropy, and the probability of error is
arbitrarily small. Conversely, no source coding can achieve an expected number of bits per
symbol less than the entropy without almost sure loss.

Formally, let ε > 0, and let (Xi)
n
i=1 be symbols i.i.d. according to pX . Then there exists a

source coding scheme S → {0, 1}∗ such that

lim
n→∞

E
(
1

n
len(X1, . . . , Xn)

)
= lim

n→∞
E

(
1

n

n∑
i=1

len(Xi)

)
≤ H(X) + ε,

and the original message (X1, . . . , Xn) can be recovered with probability 1− ε.

For an asymptotically error-free encoding (by Proposition 2), we can use log2 |A
(n)
ε | bits to encode

the typical messages, and ignore all other messages. Or, we can add 1 bit to indicate if a sequence
is typical, and encode the atypical messages using at most n log2 |S| bits.

The latter always error-free encoding requires at most

(1− ε) ·
(
1 +

⌈
log2

∣∣A(n)
ε

∣∣⌉)+ ε · (1 + n ⌈log2 |S|⌉)

bits in expectation to encode a message. We can show that this scheme can also get arbitrarily
close to entropy (the Shannon limit) using an ε/2 trick.

6.3 Huffman coding

On this note, let us consider actual practical implementations of source coding, one of the most
common of which is Huffman coding. In the following discussion, an encoding scheme is simply
a code, and a codeword is the encoded bitstring of some symbol in S.

Definition 3 (Prefix code; unique decodability).

A prefix code is prefix-free — no codeword is a prefix of another codeword. Equivalently, a
code is a prefix code if every codeword can be described by a path from the root to a leaf in
some fixed binary tree.

The prefix-free property implies that any sequence of bits can be uniquely decoded, though
not necessarily the converse.

Example 1 (Prefix and non-prefix codes).

3

The set of codewords {0, 10, 110, 111} is a prefix code. {0, 10, 010} is not prefix-free, and
010 is not uniquely decodable. However, there also exist non-prefix codes that are nonetheless
uniquely decodable, such as {0, 11, 010}.

Definition 4 (Huffman coding).

Huffman coding is a greedy algorithm that builds an optimal prefix code, which turns out
to be optimal among all uniquely decodable codes that assign codewords symbol-by-symbol.

def huffman(p_1, ..., p_n → Q):
input: the probabilities of each symbol
output: the encoding binary tree
Q ← priority queue of nodes sorted by p_i
for i = 1 to n:

add leaf node i to Q
while size of Q is not 1:

i ← pop min from Q
j ← pop min from Q
create new node x
x.left, x.right, p_x ← i, j, p_i + p_j
add x to Q with priority p_x

The algorithm constructs bottom-up a binary tree whose nodes are metacharacters, sets of
one or more symbols. Each symbol is a leaf, with its codeword given by the path to it starting
from the root, where conventionally the left branch is 0 and the right branch is 1.

The following example of a Huffman tree shows that ties can be broken arbitrarily. What property
of the binary tree guarantees that the resulting code is prefix-free?

1

0.5 0.5

‘e’: [1]

0.2 0.3

‘s’: [00]

0.12 0.18

‘6’: [010] ‘c’: [011]

4

The idea behind Huffman coding is quite similar to deterministic binary search, in which a search
space of k objects is repeatedly halved. Every object uniquely determines ⌈log2(k)⌉ yes-no answers
to the questions of “left or right half” in each iteration, which gives the object’s bitstring.

However, with Huffman coding, the objects or symbols are not equally weighted in probability, so
more probable symbols should have shorter bitstrings to minimize the expected length. Thus we
split the “probability search space” of total mass 1 approximately in half with each question.

Example 2 (Optimality of Huffman coding).

If every pi is a power of 1
2
, then the expected number of bits per symbol under Huffman

coding is precisely the entropy. The depth of a leaf — the number of nodes to it from the
root, or the length of its codeword — is precisely ℓi if pi = 2−ℓi , so the expected length is

n∑
i=1

piℓi =
n∑

i=1

pi log2

(
1

pi

)
= H(X).

In general, there are more optimal codes such as arithmetic coding that encode entire messages
rather than individual symbols, but these are out of our scope for now.

7 Channel coding

Our aim in this section is the transmission of encoded information over a noisy channel, so our
setup will be slightly different from source coding.

Definition 5 (Channel).

A channel is a conditional probability distribution pY |X(y | x), which is used n times for an
encoded message of n bits. X ∈ {0, 1} is the input bit, and Y is the output bit.

Example 3 (Binary symmetric channel; binary erasure channel).

The binary symmetric channel (BSC) errors (sends the opposite bit) with probability p,
and the binary erasure channel (BEC) erases or corrupts an input bit with probability p,
which is represented as sending the special symbol ? or ε.

0

1

0

1

1− p

1− p

p

p

0

1

0

1

?

1− p

1− p

p

p

5

Definition 6 (Capacity).

The capacity of a channel described by pY |X is

C := max
pX

I(X;Y).

In the ideal case Y = X, no information content of X is lost during transmission: C = I(X;Y) =
H(X). Perhaps surprisingly, Y = 1−X is also ideal, as we can imagine always flipping the output
bit to recover X. In general, the capacity falls between 0 and H(X).

Theorem 2 (Capacity of the BSC).

The capacity of the binary symmetric channel with error probability p is 1−Hb(p).

Proof. We can find the capacity directly:

C = max
pX

H(Y)−H(Y | X)

= max
pX

H(Y)−
∑

x∈{0,1}

pX(x) ·H(Y | X = x)

= max
pX

H(Y)−
∑

x∈{0,1}

pX(x) ·Hb(p)

= max
pX

H(Y)−Hb(p)

= 1−Hb(p),

where H(Y) = 1 is maximized by uniform pX .

Definition 7 (Encoding function; decoding function; probability of error).

Suppose we want to send a message of length ℓ. A lossless source coding scheme S → {0, 1}∗
gives an encoding function fn : S

ℓ → {0, 1}n and a decoding function gn : {0, 1, ?}n →
Sℓ. If the message M is encoded as the input bitstring fn(M) = (x1, . . . , xn), and the output
of the channel is (y1, . . . , yn), then the probability of error is

Perror(n) := P(gn(y1, . . . , yn) ̸= (x1, . . . , xn) | fn(M) = (x1, . . . , xn)).

We naturally want the channel to be asymptotically error-free, so that its Perror(n) tends to 0 as
n → ∞, just as P((x1, . . . , xn) /∈ A

(n)
ε) → 0 for source coding. We next find that capacity is an

optimal upper bound on the rate of transmission, just as entropy is an optimal lower bound on
the expected length of compression, both asymptotically error-free.

Definition 8 (Rate).

6

The rate of a channel is the ratio

R :=
ℓ

n
=

H(M)

n
.

That is, the number of bits of information about the source message per symbol received.

Definition 9 (Achievability).

Channel rate R is achievable if for every n ∈ Z+, there exists an encoding function fn and
a decoding function gn (where messages have length ℓ(n) := ⌈nR⌉) such that the channel is
asymptotically error-free.

The following central result of channel coding justifies the equivalent definition that the capacity
of a channel is its largest achievable rate, though the proof is out of our scope.

Theorem 3 (Channel coding theorem).

Any rate below the channel capacity is achievable. For any channel with capacity C and any
R < C, there exists a communication scheme with rate R that is asymptotically error-free.

Conversely, no rate greater than the capacity is achievable without a non-negligible probability
of error. Furthermore, any transmission rate up to

R(ε) :=
C

1−Hb(ε)

is achievable if and only if the probability of error is at most ε.

Theorem 4 (Capacity of the BEC).

The capacity of the binary erasure channel with error probability p is 1− p.

Proof. We show that no rate above 1−p is achievable by an oracle argument. Even supposing
perfect feedback from the receiver, the transmitter can only resend the erased input bits, of which
p will be erased again. Thus the reliable rate of communication is 1− p bits per channel use.

Now, let ε > 0, and let us show that any R = 1− p− ε is achievable. We generate a table with
2ℓ(n) rows and n columns, where each entry is i.i.d. Bernoulli(1

2
). The codebook thus associates

each of the 2ℓ(n) possible messages to a codeword of length n.

By the Strong Law of Large Numbers, we can consider the channel to erase p of the bits in any
codeword, and we suppose without loss of generality that the first ⌊n(1− p)⌋ bits are not erased.
The receiver then truncates their codebook to the first ⌊n(1− p)⌋ columns, and declares an error
if there is no unique match between the received bits and a truncated codeword.

7

Thus, the probability of error is the probability that at least two entries in the truncated codebook
match the received bits. (By construction, no truncated codewords match the received bits with
negligible probability.) If γi are the truncated codewords, then by the union bound,

Perror(n) = P

2ℓ(n)⋃
i=2

{γ1 = γi}

 ≤ 2ℓ(n) · 2−⌊n(1−p)⌋ ≃ 2−n(1−p−R) → 0.

In practice, however, exhaustive search over a massive codebook is unusable, even if the com-
munication scheme does achieve channel capacity. Thus, implementable and fast codes such as
error-correcting codes are needed to approach the optimal rate of transmission.

■

8

	Source coding
	Lossless compression
	Source coding theorem
	Huffman coding

	Channel coding

