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4 Stationarity I

Now that we understand general distributions of a Markov chain given the initial distribution π0

and one-step transition probabilities p(i, j), let us consider special distributions — ones invariant
over time, which are deeply connected to the long-term asymptotic behavior of Markov chains.

Definition 1 (Stationary random process).

Let (Xn)n∈N be a S-valued discrete-time random process. The process is stationary, or at
stationarity, if for every time step n ∈ N, time shift k ∈ N, and states x0, . . . , xn ∈ S,

P(X0 = x0, . . . , Xn = xn) = P(Xk = x0, . . . , Xn+k = xk).

A stationary random process does not imply that Xn are invariant as random variables: the values
of X0, . . . , Xn may change, but their distribution is fixed under translation in time.

In particular to Markov chains, stationarity has several seemingly weaker but equivalent conditions,
which allow us to more easily check for stationarity. Specifically, Markov chains at stationarity
are characterized by their stationary distributions.

Definition 2 (Stationary distribution).

A stationary distribution, or invariant, steady-state, or equilibrium distribution of a Markov
chain (Xn)n∈N with transition probability matrix P is a distribution π such that

π = πP.

We will also find it useful to introduce the following related definition here, as it describes possible
candidates to check for the existence of stationary distributions.

Definition 3 (Invariant measure).
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An invariant measure or stationary measure of a Markov chain is a nonnegative measure
µ : S → [0,∞), represented as a row vector, such that µ = µP .

Every stationary distribution is an invariant measure, but not the converse: the entries of µ
do not have to sum to 1, i.e. µ may not be a probability distribution.

Proposition 1.

Stationarity implies time-homogeneity.

Proof. Recall that a chain is time-homogeneous if P(Xk+2 = j | Xk+1 = i) = P(Xk+1 = j |
Xk = i). Now, for a chain at stationarity, π0 = πk for every k ∈ N by Definition 1 for n = 0.
Then, by choosing n = 1,

P(Xk+2 = j | Xk+1 = i) =
1

πk+1(i)
· P(Xk+2 = j,Xk+1 = i)

=
1

πk(i)
· P(Xk+1 = j,Xk = i)

= P(Xk+1 = j | Xk = i).

While Definition 1 requires the invariance of every finite-dimensional joint distribution pX0,...,Xn ,
for processes with the Markov property, invariance of the marginal distributions πn is sufficient.

Proposition 2.

A Markov chain is at stationarity iff π0 = πn for all n ∈ N.

Proof. The forward direction follows from Definition 1, so we will show the converse. If π0 = πk

for all k ∈ N, by the Markov property with time-homogeneity,

P
(
X(0:n) = x(0:n)

)
= π0(x0)

n−1∏
i=0

p(xi, xi+1)

= πk(x0)
n−1∏
i=0

p(xi, xi+1)

= P
(
X(k:n+k) = x(k:n+k)

)
for any n ∈ N and any sequence of states x0, . . . , xk, even those with zero probability.

2



Proposition 3 (Chain is stationary iff initial distribution is stationary).

A Markov chain is stationary iff πn = πn+1 for all n ∈ N. Equivalently, a chain is stationary
iff it is started at a stationary distribution π0 = π0P = π1.

Proof. We observe that π0 = πn and πn = πn+1 for all n ∈ N are equivalent conditions. By the
equations πn+1 = πnP or πn = π0P

n, we find that π0 = π1 is equivalent as well.

Note that πn = πn+1 for some n ∈ N does not imply the chain is stationary, though it does
imply the truncated chain (Xn+k)k∈N is stationary, as the distribution πn is stationary. A chain is
stationary iff its distribution is stationary at all times. Henceforth, we will only consider stationary
distributions, as this distinction is negligible.

Example 1 (Reaching a stationary distribution from a different initial distribution).

Consider the following chain. If π0 = [1, 0], then π1 = [1
2
, 1
2
] is the stationary distribution.

0 11
2

1
2

1
2

1
2

In fact, we can show that any π0 will converge to the stationary distribution [1
2
, 1
2
] in one step,

which is not true in general. Using intuition about sequences of real numbers, we might guess that
sequences of distributions (πn)n∈N can also converge in finitely many steps, converge eventually,
or oscillate forever, though not diverge to infinity, as distributions have total mass 1.

Example 2 (Eventual convergence to stationary distribution).

In the following chain, if π0(i) ̸= 0 for only finitely many states i, then the chain will reach
the stationary distribution [1, 0, 0, . . .] in finite time. If π0(i) = 2−i, then πn converges to it
eventually, though not in any finite number of time steps.

0 1 2 · · ·1 1 1

Definition 4 (Limiting distribution).

The limiting distribution of a Markov chain is the probability distribution

π∞ = lim
n→∞

πn
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if it exists. Equivalently, if Xn
d→ X∞ describes convergence in distribution, then X∞ ∼ π∞.

The term steady-state distribution is also sometimes used, though we will reserve this term
for stationary distributions.

Proposition 4 (Limiting distributions are stationary).

The limiting distribution may not exist, but when it does, it is a stationary distribution. The
converse is not true: not every stationary distribution is limiting.

Proof. If π∞ exists, then its entries are bounded in [0, 1], so we can write

π∞ = lim
n→∞

πn+1 = lim
n→∞

π0P
n+1 =

(
lim
n→∞

π0P
n
)
P = π∞P.

The limiting distribution is unique as a limit, but the stationary distribution may not be unique
as we will soon see, so not every stationary distribution is limiting.

We will return to the question of when the limiting distribution exists, or when the Markov chain
converges, in part III. For now, we will look at two examples of divergence.

Example 3 (Infinite oscillation between distributions).

For any π0 ̸= [1
2
, 1
2
], the following chain will oscillate between [p, 1− p] and [1− p, p].

0 1

1

1

Example 4 (Divergence to infinity, or the “arrow of time”).

The distributions πn cannot “diverge to infinity,” but the random variables Xn can when the
state space S is infinite, as in the following chain for any π0.

0 1 2 · · ·1 1 1

We might now ask how to find stationary distributions explicitly. We can look at the equivalent
condition of π0 = π1 from two familiar perspectives: as the balancing or conservation of flow, or
as eigenvectors of the linear stochastic system π = πP .

The perspective of graph properties of the transition diagrams will prove useful later in conditions
for the existence of, uniqueness of, and convergence to a stationary distribution.
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Proposition 5 (Conservation of flow).

π is a stationary distribution iff flow-in equals flow-out for every state j, or iff π satisfies the
(global) balance equations:∑

i∈S

π(i) · p(i, j) ∗
= π(j) =

∑
k∈S

π(j) · p(j, k) ∀j ∈ S.

Recall that mass always equals flow-out, so the GBEs are the starred equations for flow-in equals
mass. To show Proposition 5, we can simply expand π = πP :

(πP )(j) = π · colj(P ) =
∑
i∈S

π(i) · p(i, j) = π(j).

Stationary distributions thus have a very intuitive interpretation: if the amount of flow in always
equals the amount of flow out, then the mass is conserved at each state, which is precisely the
condition that P(Xn = i) = P(Xn+1 = i).

When the state space S is finite, the global balance equations give a collection of |S|+ 1 many
linear equations along with the normalization condition

∑
i∈S π(i) = 1, making one equation

redundant. The system can be solved for small |S| by Gaussian elimination for instance, but it is
computationally intractable to solve in general.

As a bit of foreshadowing for CTMCs, by removing self-loops, the GBEs are the same as

π(j)
∑
i ̸=j

p(i, j) =
∑
k ̸=j

π(j) · p(j, k) ∀j ∈ S.

The global balance equations amount to solving the full linear system given by π = πP , but with
the observation that π must be an eigenvector of P , we have access to more efficient methods
of finding stationary distributions, as well as a partial guarantee of existence:

Proposition 6 (Existence of invariant measure*).

Every row-stochastic matrix P has a row eigenvector µ of eigenvalue 1.

Proof. The left and right eigenvalues of any square matrix are the same:

det(A− λI) = det((A− λI)T) = det(AT − λI).

Then, every stochastic matrix has a right- or column- eigenvector with right eigenvalue 1:

P1 = 1,

the same as every row of P summing to 1, where 1 is the vector with all entries 1.
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The sum of entries of an invariant measure µ, represented as a row vector with |S| many nonneg-
ative entries, is also called its ℓ1-norm ∥µ∥1. Eigenvectors are closed under linear combination:
if µ is a row eigenvector of eigenvalue 1, then so is any cµ, including 0µ = 0. In particular, any
0 < ∥µ∥1 < ∞ can be normalized to obtain a stationary distribution π = µ

∥µ∥1
. The converse

gives us another method of checking that a stationary distribution does not exist:

Proposition 7 (No stationary distribution without invariant measure of finite nonzero norm).

If every eigenvector of P with eigenvalue 1 has zero or infinite ℓ1-norm, then the chain with
transition probability matrix P does not have a stationary distribution.

For example, we can show that Example 4 fails to converge to a limiting distribution because no
stationary distribution exists at all. Any solution to the GBEs µ must be a uniform distribution
by symmetry, but either µ(0) = 0 or µ(0) = c > 0, so

∞∑
i=0

µ(0) = 0 or ∞,

so no stationary distribution exists. Interestingly, this is precisely the same proof that there is no
uniform distribution over any countable space!

Lastly, we can explicitly find the stationary distribution-eigenvector in a special case.

Proposition 8 (k-step transition probabilities converge to stationary mass).

If the transition probability matrix P has strictly positive entries Pi,j > 0, then P has a unique
stationary distribution π such that for any (row or initial state) i ∈ S,

π(j) = lim
k→∞

(P k)i,j = lim
k→∞

p(k)(i, j).

Proof. Let Q = limk→∞ P k. Then Q = QP , so for every i ∈ S,

rowi(Q) = rowi(Q)P.

The entries of P k are k-step transition probabilities p(k)(i, j) ∈ [0, 1], so the entries of Q belong
in [0, 1] as well, and rowi(Q) is a stationary distribution. The condition that every p(i, j) > 0
ensures that no row of Q sums to 0.

One final remark: we have been “choosing different distributions for the same chain” throughout
this section, but the distributions (πn)n∈N are determined by the chain (Xn)n∈N, so we have been
informal with our terminology in referring to the transition probabilities as the chain. (The Markov
property says that the chain is determined by the initial distribution and transition probabilities.)
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5 Reversibility

Let us now recall the reversed chain. Stationarity gives the invariance of every finite-dimensional
joint distribution under translation in time, but what about invariance under reflection in time?
That is, (X0, . . . , Xn)

d
= (Xn, . . . , X0). We find that this defines reversibility, a stronger condition

than even stationarity, in which a chain is indistinguishable run forwards or backwards.

Proposition 9 (Reversed stationary chain is stationary).

Let (Xn)n∈N be a stationary chain. Then the reversed chain (Yn)
N
n=0 is time-homogeneous,

and moreover itself a stationary chain with the same stationary distribution.

Proof. Recall the reverse transition probabilities p̃(i, j), which we want to show are well-defined.
By the stationarity and time-homogeneity of the forward chain {Xn},

P(Yn+1 = j | Yn = i) = P(XN−n−1 = j | XN−n = i)

=
π(j) · p(j, i)

π(i)

= P(Yn = j | Yn−1 = i).

We also find a formula for p̃ in terms of π and p. By rearranging,∑
i∈S

π(i) · p̃(i, j) =
∑
i∈S

π(j) · p(j, i) = π(j),

so π also satisfies the GBEs for the transition probabilities p̃(i, j). Alternatively, {Yn} is stationary
as P(Yn = i) = P(XN−n = i) = π(i) for every i ∈ S and 0 ≤ n ≤ N .

Definition 5 (Reversibility).

A Markov chain is reversible if the forward transition probabilities are the same as the reverse
transition probabilities: for every pair of states i, j ∈ S,

p̃(i, j) = p(i, j).

Proposition 10 (Detailed balance equations).

An equivalent condition for reversibility is the detailed balance equations (DBEs):

π(i) · p(i, j) = π(j) · p(j, i) ∀i, j ∈ S.

The flow from i to j is equal to the flow from j to i; the flows across every edge are balanced.
This is also known as local balance, in contrast to the global balance of stationarity.

This pairwise equilibrium removes the directionality of time, as if bringing time to a standstill.
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Proposition 11 (Reversibility implies stationarity).

Reversibility implies stationarity, but not the converse. Local balance implies global balance.

Proof. Suppose that reversibility holds for the distribution π. Then for any j ∈ S,

π(j) =
∑
i∈S

π(j) · p(j, i) ∗
=

∑
i∈S

π(i) · p(i, j).

Solving the detailed balance equations to find a stationary distribution turns out to be easier than
solving the global balance equations usually, even though the DBEs may not have a solution at
all! A clock, or 12-cycle, is a counterexample to the converse: its uniform stationary distribution
is not reversible. Intuitively, any particle or realization can “tell the direction of time.”

Proposition 12 (Forward chain and reverse chain are equal in distribution when reversible).

Let {Xn} be a reversible Markov chain started at stationarity π0 = π. Then

(X0, . . . , XN)
d
= (XN , . . . , X0).

Proof. We use both the forwards and backwards Markov property below.

P
(
X(0:N) = x(0:N)

)
= π(xN)

N−1∏
i=0

p(xi+1, xi)

= P(X0 = xN)
N−1∏
i=0

P(XN−i = xi | XN−i−1 = xi+1)

= P
(
X(N :0) = x(0:N)

)
.

We may also suspect a graphical condition for reversibility, one involving undirected edges.

Definition 6 (Graph structure).

The graph structure of a transition diagram (S,E) is the undirected graph

(S, (E ∪ Eop) \ {(i, i) | i ∈ S}),

in which the directions of edges and self-loops are removed from the edge set E.
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Note that self-loops have no effects on flow-in versus flow-out relations between pairs of states,
so they trivially satisfy detailed balance.

Proposition 13 (Tree structure implies reversibility).

If the graph structure of a finite-state irreducible Markov chain is a tree, then the stationary
distribution of the Markov chain satisfies detailed balance.

The proof is left as an exercise — the property that any pair of vertices in a tree is connected by
at most one edge, along with Proposition 11, may help. In particular, chains that resemble lines
also satisfy detailed balance, such as the example below.

Example 5 (Finite birth-death chain).

0 1 · · · n− 2 n− 1

p

1− p

p

1− p

p

1− p

p

1− p

p 1− p

Example 6 (Bernoulli process).

The length of the queue in a discrete-time Bernoulli process can be modeled as a reversible
chain: a customer arrives with probability p at every time step n ∈ N, and a customer in the
queue is served with probability q independently. When the queue is run backwards in time,
customer departures become arrivals — the departure process is also a Bernoulli process!

Another way of framing the conservation of flow is as flow-in equalling flow-out across collections
of edges: for global balance, it is the edges between a single state and all other states. A stronger
result in the same vein gives us another perspective on Proposition 13:

Proposition 14 (Cut property).

For any irreducible Markov chain at stationarity, flow-in equals flow-out holds across any cut
(T, S \ T ) of the transition diagram:∑

i∈T

∑
j∈S\T

π(i) · p(i, j) =
∑
i∈T

∑
j∈S\T

π(j) · p(j, i).

Proof. Global balance gives the equality of the summations over j ∈ S:∑
i∈T

∑
j∈S

π(i) · p(i, j)−
∑
i,j∈T

π(i) · p(i, j) =
∑
i∈T

∑
j∈S

π(j) · p(j, i)−
∑
j,i∈T

π(j) · p(j, i).
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We conclude with an optional result: a necessary and sufficient graphical condition for reversibility,
which almost vacuously implies Proposition 13.

Proposition 15 (Kolmogorov cycle criterion*).

An irreducible, positive recurrent, aperiodic Markov chain with transition probability matrix
P is reversible iff for every i1, . . . , in ∈ S,

p(i1, i2) · p(i2, i3) · · · p(in, i1) = p(i1, in) · · · p(i3, i2) · p(i2, i1).

The probability of traversing any cycle in the transition diagram is the same in both directions.

Proof. We will show the converse. If the cycle condition holds, the probability of traversing any
particular sequence i = x0, x1, . . . , xn, xn+1 = j given x0 is

P
(
X(n+1:1) = x(n+1:1) | X0 = x0

)
=

1

p(xn+1, x0)

[
p(xn+1, x0)

n∏
i=0

p(xi, xi+1)

]

∗
=

1

p(xn+1, x0)

[
p(x0, xn+1)

n∏
i=0

p(xi+1, xi)

]

=
p(x0, xn+1)

p(xn+1, x0)
· P

(
X(n+1:1) = x(0:n) | X0 = xn+1

)
.

We take the sum over all possible sequences x1, . . . , xn ∈ S, then take the limit as n → ∞ as
Proposition 8 applies to P by assumption:

P(Xn+1 = j | X0 = i) = p(n+1)(i, j) → π(j)

p(i, j)

p(j, i)
· P(Xn+1 = i | X0 = j) =

p(i, j)

p(j, i)
· p(n+1)(j, i) → p(i, j)

p(j, i)
π(i).

Example 7 (Metropolis–Hastings algorithm).

Monte Carlo Markov chain (MCMC) algorithms allow us to sample even computationally
intractable probability distributions π by designing a chain with stationary distribution π, from
which samples at stationarity approximate π.

The Metropolis–Hastings algorithm is an important MCMC algorithm that only requires
information about π up to a constant factor, though the factor is important for tractability,
but crucially always produces a reversible chain. Continued in part III.

■
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