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1 Constructions

Poisson processes are in some sense the simplest continuous-time Markov processes. They inherit
many nice properties of the Poisson distribution, some of which we recall: the parameter or rate
λ is equal to the mean and the variance; independent Poisson random variables can be summed,
and those sums decomposed; and the Poisson distribution is a limit of binomial distributions —
the law of rare events.

Definition 1 (Counting process*).

A counting process is a nondecreasing N-valued random process (Nt)t≥0. The number of
occurrences at time t is N(t) = Nt. We also write N(s, t) := N(t) −N(s) for the number
of occurrences, or increment, between times s and t, s < t.

One of the simplest counting processes is the count at times t = 0, 1, 2, . . . of an event, or arrival,
that occurs independently with probability p, such as the number of successes of a repeated trial.
In other words, N(t) ∼ Binomial(t, p), and every increment N(t, t + 1) is i.i.d. as Bernoulli(p).
Such a counting process is called a binomial process.

We now follow the same strategy of continuization as in the law of rare events: we take finer and
finer discrete time steps, keeping the rate p/∆t = λ as an invariant. The resulting continuous-
time process thus describes rare occurrences that happen with a constant rate: customer arrivals,
natural disasters, phone calls to a store, and much more.

Definition 2 (Poisson process I).

The Poisson process with rate λ > 0, whose distribution is denoted PP(λ), is the counting
process (Nt)t≥0 that satisfies the following.

1. N(0) = 0 and N(t) ∼ Poisson(λt).
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2. Stationary increments. For every s, t ≥ 0, N(s, s + t)
d
= N(t). The increment in

any interval of length t is distributed as Poisson(λt).

3. Independent increments. For every k ∈ N and times t0 < t1 < · · · < tk, the random
variables N(t0, t1), . . ., N(tk−1, tk) are independent.

The simple plot of t vs Nt brings a surprising amount of insight.
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DTMCs have the basic simplifying assumption of time-homogeneity, which is incorporated by the
fact that λ is constant. In continuous time, we impose a similar assumption of well-behavedness:
regularity, that multiple consecutive increments or “double jumps” have negligible probability. If
h is a small length of time, then

P(N(t, t+ h) = 0) = 1− λh− o(h)

P(N(t, t+ h) = 1) = λh+ o(h)

P(N(t, t+ h) ≥ 2) = o(h)

where o(h) → 0 as h → 0. Regularity is a reasonable assumption: real-world occurrences mostly
do not occur more than once in any infinitesimal interval of time. A simplified summary:

The key property of a Poisson process is intuitively P(N(t, t+ dt) = 1) = λ dt.

The fact that increments or jumps occur one at a time also gives the following representation of
a Poisson process as a chain of states drawn in a line:

0 1 2 · · ·λ λ λ

We will see that this in fact describes PP(λ) as a simple CTMC, parametrized by a single λ > 0.
We now turn to leverage horizontal and vertical perspectives of the plot of Nt. The chain is the
projection onto the vertical axis N, the vertical distances are the increments of 1, and the height
is always Nt. What about the projection down onto the horizontal axis?
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We have considered the Poisson process temporally so far, but by treating the time domain R≥0

as a space, in which points are randomly scattered, we gain a more general spatial interpretation
often called the Poisson point process. It turns out that the PPP describes many common spatial
distributions, such as wireless devices in a region, dust particles in air, or trees in a forest.

We can generalize Definition 1 as follows. The number of points inside any region with measure t
is distributed as Poisson(λt); in 1 dimension, t is simply the length of the interval (s, s+ t]. The
number of points in disjoint regions is independent, which reduces to the property of independent
increments.

A nice consequence of the spatial interpretation is that we find a uniformity of the points scattered
in some fixed region [0, Nt], which greatly simplifies our understanding of the arrival times. But,
perhaps more importantly, by considering the positions of the points or arrival times Ti, and the
horizontal distances or interarrival times τi = Ti − Ti−1, we obtain a more natural construction
of Poisson processes.

Definition 3 (Poisson process II).

Let λ > 0, let (τi)
∞
i=1 be i.i.d. Exponential(λ) interarrival times or holding times, and let

Tn :=
∑n

i=1 τi be arrival times, distributed as Erlang(n, λ). Then the number of arrivals

Nt := sup {n ≥ 0 : Tn ≤ t}

for t ≥ 0 form a Poisson process with rate λ.

So, Poisson processes are thus more easily modelled by a sum of i.i.d. samples of an Exponential
distribution. The dual notations of Nt and Tn, number and time, also suggest some connections:
Tn = inf {t ≥ 0 : Nt ≥ n} is the first time at which there are n arrivals. We wish to emphasize
the following connection:

Nt ≥ n iff Tn ≤ t.

In general, the sum Sn =
∑n

i=1Xi of i.i.d. samples of a fixed distribution are the arrival times,
or renewal times, of a renewal process. We have already seen an application of renewal theory
in the proof that π(i) = 1/Ei(T

+
i ), where each revisit to i is an arrival or renewal.

Before our formal proof of the equivalence of Definition 1 and Definition 2, let us intuit why the
holding times τi have an Exponential distribution. By the independence of increments, as dt → 0,

P(τi > t) = (1− λ dt)t/dt =
(
(1− λ dt)1/d

)
t → e−λt,

which is precisely the ccdf of Exponential(λ).
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2 Equivalency

We want to show that our definitions of a Poisson process coincide, which gives us the power of
multiple perspectives, just as the four characterizations of DTMCs did. As a warmup,

Definition 4 (Erlang distribution).

The continuous random variable X follows the Erlang distribution Erlang(k, λ) for k ∈ N
and λ > 0 if X is the sum of k i.i.d. Exponential(λ) r.v.s. The Erlang distribution is a special
case of the gamma distribution for integer k.

Proposition 1 (Pdf of Erlang distribution).

The probability density function of Tn ∼ Erlang(n, λ) is

fTn(t) =
(λt)n−1

(n− 1)!
λe−λt.

Proof. The full joint distribution of (T1, . . . , Tn) may be easier to work with, because it allows us
to use the simpler interarrival times:

fT1,...,Tn(t1, . . . , tn) = fτ1,...,τn(t1 − t0, . . . , tn − tn−1) · 1{t1 ≤ · · · ≤ tn}

= 1t1≤···≤tn

n∏
i=1

fτi(ti − ti−1)

= 1t1≤···≤tn

n∏
i=1

λe−λ(ti−ti−1)

= 1t1≤···≤tnλ
ne−λtn .

Interestingly, there is no dependence on the values of t1, . . . , tn−1, as we will find in another way
in [Prop]. Now, we can integrate over the nuisance variables t1, . . . , tn−1 to find

fTn(t) =

∫
t1≤···≤tn−1≤t

fT1,...,Tn−1,Tn(t1, . . . , tn−1, t) dt1 · · · dtn−1 =
tn−1

(n− 1)!
· λne−λt

by the symmetry of t1, . . . , tn−1, as the hypercube [0, t]n−1 has volume tn−1, divided equally into
(n− 1)! regions by permutations, so the support of the integral has volume tn−1/(n− 1)!.

Proposition 2 (Poisson distribution).

Nt in Definition 2 is indeed distributed as Poisson(λt).

4



Proof. We recall the pmf of Poisson(λt), which is interestingly equal to t
n
· fTn(n):

P(Poisson(λt) = n) =
(λt)n

n!
e−λt.

Nt = n iff Tn ≤ t and Tn+1 > t, so pNt(n) is equal to

P(T1 ≤ t, . . . , Tn ≤ t, Tn+1 > t) =

∫
t1≤···≤tn≤t<tn+1

fT1,...,Tn+1(t1, . . . , tn+1) dt1 · · · dtn+1

=

∫
t1≤···≤tn≤t

e−λ(t−tn)

n∏
i=1

λe−λ(ti−ti−1) dt1 · · · dtn

=
tn

n!
λne−λt.

The main distributions: τi ∼ Exponential(λ), Tn ∼ Erlang(n, λ), and Nt ∼ Poisson(λt).

As we have hinted at in the two proofs above,

Proposition 3 (Uniformity of past arrival times).

Given Nt = n, the arrival times T1, . . . , Tn are jointly distributed as the order statistics of n
i.i.d. Uniform([0, t]) random variables:

fT1,...,Tn|Nt(t1, . . . , tn | n) = n!

tn
· 1t1<···<tn<t.

Proof. Indeed, we can simply check that

fT1,...,Tn|Nt(t1, . . . , tn | n) · pNt(n) =
n!

tn
1t1<···<tn<t ·

(λt)n

n!
e−λt = λne−λt.

There is one more key insight we can get from the plot of t vs Nt: a Poisson process is self-similar
— the distribution of its shape is the same when any (t, Nt) is taken as the origin (0, 0). Given
the present Nt = n, the past is uniform, and the future carries on memoryless.

Proposition 4 (Memorylessness of Poisson process).

If (Nt)t≥0 is a Poisson process with rate λ, then for any s ≥ 0, the shifted process started at
time s, (Ns+t −Ns)t≥0, is also a Poisson process with rate λ.
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Proof. Recall the memorylessness of the Exponential distribution. If X ∼ Exponential(λ), then
X | X > s is distributed as s+ Exponential(λ):

P(X > s+ t | X > s) =
P(X > s+ t)

P(X > s)
=

e−λ(s+t)

e−λs
= e−λt = P(X > t).

This is the somewhat paradoxical result that no longer how long you have already waited for an
Exponential bus, you are always expected to wait for another λ time.

P(N(s+ t) = m | N(s) = n) = P(N(s, s+ t) = m− n)

We could derive the above from the memorylessness of the Exponential, but it will be immediately
implied by the property of stationary increments.

The ability to look into an ongoing Poisson process at any arbitrary time s ≥ 0, without needing
to know any of its history except for N(s), is an incredibly desirable property we want to show.
Now that we have warmed up by seeing several techniques for translating between Nt ↔ Tn, we
are ready to show the equivalency of the definitions of Poisson processes:

Definition 1 is a statement about Nt, but we only readily know Tn, so we can translate between
the two by Nt ≥ n iff Tn ≤ t. The distribution of Tn is easier to find from the joint distribution
of T1, . . . , Tn, as the latter can involve the interarrival times τ1, . . . , τn, whose key properties of
independence and Exponential distribution give us a product of simpler terms.

Proposition 5.

Definition 2 satisfies the property of stationary increments.

Proof. Fix s > 0, and let T be the time until the first arrival after time s.

P(T > τ | Ns = n, Tn = t) = P(τn+1 > (s− t) + τ | τn+1 > s− t, Tn = t)

= P(τn+1 > (s− t) + τ | τn+1 > s− t)

= P(τn+1 > τ)

= e−λτ .

The interarrival times are independent — thus so are τn+1 and Tn — and memoryless by being
Exponential. As the conditional distribution of T does not depend on Nt or Tn, it must also be
the unconditional (marginal) distribution, which we can verify by the law of total probability. By
conditioning on T1, . . . , Tn, we find that T is independent on the arrival times, interarrival times,
and in fact (Nt)0≤t≤s. This is in fact memorylessness.

Moreover, given Nt = n and Tn = t, the subsequent interarrival times τn+2, τn+3, . . . after T are
i.i.d. Exponential(λ), and by the same argument independent of (Nt)0≤t≤s. As these uniquely
characterize N(s, s+ t) for t ≥ 0, and (T, τn+2, . . .)

d
= (τ1, τ2, . . .), we are done.
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Proposition 6.

Definition 2 satisfies the property of independent increments.

Proof. Let t0 < t1 < · · · < tk. We proceed by induction on k ∈ N, where the base case is trivial.
Supposing that N(ti−1, ti) for 0 ≤ i ≤ k−1 are independent, we consider the previous proof with
s = tk−1. Then the subsequent interarrival times, which determine N(tk−1, tk), are independent
of (Nt)0≤t≤s and thus N(ti−1, ti) for 0 ≤ i ≤ k − 1 as well.

Definition 2 begets Definition 1, but we also want to show the reverse direction:

Proposition 7.

Let (τi)∞i=1 be a sequence of almost surely positive interarrival times, let Tn :=
∑n

i=1 τi, and
let Nt := sup {n ≥ 0 : Tn ≤ t}. If Nt ∼ Poisson(λt) for all t ≥ 0 and has stationary and
independent increments, then the τi are i.i.d. Exponential(λ).

Proof. We proceed by induction on i ∈ Z+. For the base case i = 1,

P(τ1 > s) = P(N(s) = 0) = e−λs

implies that τ1 ∼ Exponential(λ). Now, assuming that τ1, . . . , τn−1 are i.i.d. Exponential(λ), we
let tn−1 =

∑n−1
i=1 si and find that

P(τn > s | τ1 = s1, . . . , τn−1 = sn−1) = P(N(tn−1, tn−1 + s) = 0 | (Nt)0≤t≤tn−1)

= P(N(tn−1, tn−1 + s) = 0)

= P(N(s) = 0)

by independent increments, stationary increments, and the fact that τ1, . . . , τn−1 uniquely specify
and are specified by (Nt)0≤t≤tn−1 . As the conditional distribution of τn does not at all depend on
the τ1, . . . , τn−1, we can check that this is also its unconditional (marginal) distribution, so τn is
distributed as Exponential(λ) and jointly independent of (τ1, . . . , τn−1).

The point of this section was not in the details of the proofs, but in the value of an equivalency:
Definition 1 gives us properties of the Poisson distribution and the language of random processes
more suited for proofs, while Definition 2 gives the properties of the Exponential distribution and
an easier form for computation.

3 Merging and splitting

The applications of Poisson processes may seem limited by arrivals needing to be a “homogeneous”
type, such as buses, customers, or packets, but two properties of the Poisson distribution allow us
to also model “multityped” data: cars and trucks, different kinds of orders, packets from different
sources, combining multiple independent processes into one.
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Furthermore, amazingly, the reverse is also possible: given a Poisson stream of random arrivals
that can be classified into types, the “thinned” or split streams of the arrivals of each individual
type are themselves Poisson. For instance, if each scattered point is randomly colored, then the
points of a particular color form another, smaller Poisson point process.

Or, if every incoming packet is independently routed to different servers with some probabilities
for the purpose of load balancing, then the number of arrivals at each server can be easily analyzed
as another Poisson process with rate proportional to its probability. Poisson processes thus play
an integral part in queueing theory with generalized arrivals and departures.

Proposition 8 (Poisson merging).

If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent, then X + Y ∼ Poisson(λ+ µ).

Proposition 9 (Poisson splitting).

If Z ∼ Poisson(λ), X := Binomial(Z, 1− p), and Y := Z −X, so that Y ∼ Binomial(Z, p),
then X ∼ Poisson(λ(1− p)) and Y ∼ Poisson(λp) are independent.

These proofs should be familiar exercises. Note that it is not enough to find the expectations or
rates, as we still need to show that the distributions are Poisson.

Theorem 1 (Merging of Poisson processes).

If (Nt)t≥0 and (Mt)t≥0 are independent Poisson processes with rates λ and µ respectively,
then their sum (Nt +Mt)t≥0 is also a Poisson process with rate λ+ µ.

Proof. Let L := N +M . To show independent increments, let t0 < · · · < tk, and let us consider
the joint distribution of the increments:

P

(
k⋂

i=1

{L(ti−1, ti) = ℓi}

)
=

∑
n1,...,nk:ni≤ℓi

P

(
k⋂

i=1

{N(ti−1, ti) = ni, M(ti−1, ti) = ℓi − ni}

)

=
∑

n1,...,nk:ni≤ℓi

k∏
i=1

P(N(ti−1, ti) = ni)P(M(ti−1, ti) = ℓi − ni)
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=
k∏

i=1

∑
ni:ni≤ℓi

P(N(ti−1, ti) = ni)P(M(ti−1, ti) = ℓi − ni)

=
k∏

i=1

P(L(ti−1, ti) = ℓi).

Here, we have simply used convolution, the independent increments of the independent processes
Nt and Mt, then convolution once more. To show stationary increments, let s ≥ 0:

P(L(s, s+ t) = ℓ) =
ℓ∑

n=0

P(N(s, s+ t) = n) · P(M(s, s+ t) = ℓ− n)

=
ℓ∑

n=0

P(N(t) = n)P(M(t) = ℓ− n)

= P(L(t) = ℓ)

by the stationary increments of Nt and Mt. Lastly, the Poisson distribution and rate of Lt are
given by Proposition 8.

Theorem 2 (Splitting of Poisson processes).

Let (Nt)t≥0 ∼ PP(λ), and let (Bn)n∈N be i.i.d. Bernoulli(p) independent of (Nt). If

Na(t) := |{n ≤ N(t) : Bn = 0}| ∼ Binomial(N(t), 1− p)

Nb(t) := |{n ≤ N(t) : Bn = 1}| ∼ Binomial(N(t), p)

so that Na(t) +Nb(t) = N(t), then (Na(t))t≥0 and (Nb(t))t≥0 are also independent Poisson
processes with rates λ(1− p) and λp respectively.

Proof. By symmetry, we only have to show that (Na(t))t≥0 is a Poisson process independent of
Nb(t). To show independent increments, let t0 < · · · < tk:

P

(
k⋂

i=1

{Na(ti−1, ti) = ai}

)
=

∑
n1,...,nk:ai≤ni

P

(
k⋂

i=1

{Na(ti−1, ti) = ai}

∣∣∣∣∣
k⋂

i=1

{N(ti−1, ti) = ni}

)

· P

(
k⋂

i=1

{N(ti−1, ti) = ni}

)

=
∑

n1,...,nk:ai≤ni

[
k∏

i=1

(
ni

ai

)
(1− p)aipni−ai · P(N(ti−1, ti) = ni)

]

9



=
k∏

i=1

[ ∑
ni:ai≤ni

(
ni

ai

)
(1− p)aipni−ai · P(N(ti−1, ti) = ni)

]

=
k∏

i=1

P(Na(ti−1, ti) = ai).

Like previously, we have used the law of total probability to find the joint distribution of Na(t)
in terms of the distribution of N(t), which we know has independent increments. We can then
written the joint probabilities as a product, then transform back using the law of total probability
once more. For the sum Nt +Mt, the law gives a convolution; for the conditional Na | N , the
law gives the corresponding form we have used above.

To show stationary increments, we will similarly leverage the stationary increments of N(t):

P(Na(s, s+ t) = a) =
∑
n:a≤n

(
n

a

)
(1− p)apn−a · P(N(s, s+ t) = n)

=
∑
n:a≤n

(
n

a

)
(1− p)apn−a · P(N(t) = n)

= P(Na(t) = a).

Lastly, Na(t) ∼ Poisson(λ(1−p)t) by Proposition 9. For the independence of the split processes,
we show that {Na(ti−1, ti)}ki=1 and {Nb(tj−1, tj)}kj=1 are independent sets for t0 < · · · < tk. For
i ̸= j, independence follows from the independent increments of N(t), in particular N(ti−1, ti)
and N(tj−1, tj). For i = j, it follows from Poisson splitting for N(ti−1, ti).

4 Random incidence paradox

We will end our discussion of Poisson processes with the interesting random incidence property
or random incidence paradox (RIP).

Unlike the Poisson point process of points scattered over all of R, the Poisson process (Nt)t≥0 is
not actually translation-invariant, even though it is memoryless, because there is a fixed beginning
of time: for instance, N(2, 4) is not equal in distribution to N(−1, 1) = N(1). In some sense,
“the past is not infinite like the future.” With this in mind, let us consider a Poisson process that
has been running for a long time.

Proposition 10 (Existence of a past arrival).

As t → ∞, there is at least one arrival almost surely:

P
(
lim
t→∞

Nt ≥ 1
)
= 1.
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Proof. By the monotonicity of the event {Nt = 0}, as s ≤ t implies {Ns = 0} ⊇ {Nt = 0},

P
(
lim
t→∞

Nt = 0
)
= lim

t→∞
P(Nt = 0) = lim

t→∞
e−λt = 0.

We can thus ask the following questions at time t after the process has ran for a long time.

1. What is the expected length of time before the next arrival?

2. What is the expected interarrival time of the interarrival interval t is in?

These two seem like the same question. The answer to the first is 1
λ
, the mean of an interarrival

time, by memorylessness, yet the answer to the second is different, contrary to intuition.

Suppose that Nt = n, so that Tn ≤ t < Tn+1. Then

Tn+1 − Tn = (t− Tn) + (Tn+1 − t).

Tn+1 − t is distributed as Exponential(λ) by memorylessness, but the problematic term is the
nonnegative length t− Tn, which has ccdf

P(t− Tn > τ) = P(N(t− τ, t) = 0) = P(N(τ) = 0) = e−λτ

for 0 ≤ τ ≤ t. So t−Tn is almost Exponential(λ), “truncated” to the interval [0, t]. If we imagine
running the process in reverse, then t− Tn is time before the “next,” or previous, arrival, except
if there is no previous arrival, then t− Tn = t. The reversed process is “stopped” by the time 0,
so Poisson processes are not quite reversible.

In any case, by the tail-sum formula,

E(Tn+1 − Tn) = E(t− Tn) + E(Tn+1 − t) =

∫ ∞

0

P(t− Tn > τ) dτ +
1

λ

=

∫ t

0

e−λτ dτ +
1

λ

=
1− e−λt

λ
+

1

λ
.

We notice that e−λt is precisely P(Nt = 0), the probability there are no past arrivals, which forces
the truncation. By Proposition 10, as we take t → ∞, we have

E(Tn+1 − Tn) =
2

λ
.

A past arrival almost surely exists, just as a future arrival almost surely exists; the past is infinitely
long, the time t = 0 infinitely far away, just like the future and t = +∞, so the past and future
are symmetric in distribution, the process the same run forwards and backwards, which explains
the doubled expected interarrival time: 1

λ
from t to Tn+1, and 1

λ
from t to Tn.
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While the answer of 2
λ

makes sense, it may still seem as if we have two conflicting answers to the
same question of finding an expected interarrival time. However, the second question is not the
same as uniformly selecting an interarrival interval: each interval is weighted by its length, the
number of points t ∈ [Tn, Tn+1). Thus t has a greater chance to fall in a longer interval, so we
expect the chosen interval to be longer than a typical interarrival interval.

Our last remark: Poisson also means fish in French, so if you ever encounter any Poisson processes
problems involving poisonous fish, that’s why.

■
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