Note 17. Random graphs

Alex Fu

Fall 2022

Weighted, directed transition diagrams describe random one-directional transitions through time, but simply undirected graphs can also describe the relation of connectivity. The study of random graphs is largely focused on finding the regularity presented in random connectivity, especially asymptotic behaviors and thresholds, for instance in the evolution of random networks.

A good starting point would be a definition of a uniformly random graph. Uniform($\operatorname{Graph}(n, m)$), the uniform distribution over the set of all undirected graphs with n vertices and m edges, is one such definition, but we will focus on another, more popular "uniform" model.

Definition 1 (Erdős-Rényi random graph).
The Erdős-Rényi model of random graphs is the probability distribution $\mathcal{G}(n, p)$ over graphs with n vertices such that every possible edge appears independently with probability $p \in[0,1]$. Equivalently, the probability of any undirected graph with m edges is

$$
p^{m}(1-p)^{\binom{n}{2}-m}
$$

p is often denoted $p(n)$ for its dependence on n. The trivial cases of $p=0$ and $p=1$ are the empty graph and the complete graph K_{n} respectively, while the case of $p=\frac{1}{2}$ defines a uniform distribution over all graphs with n vertices.

Proposition 1 (Basic properties of ER graphs).
a. The expected number of edges in $G \sim \mathcal{G}(n, p)$ is $\binom{n}{2} p$.
b. The degree of any particular vertex is distributed as $\operatorname{Binomial}(n-1, p)$, so its expected number of neighbors is $(n-1) p$.
c. The probability that any given vertex is isolated is $(1-p)^{n-1}$.
d. The distribution of $\operatorname{deg} v$ converges to Poisson (λ) as $n \rightarrow \infty$ if $\lambda=\lim _{n \rightarrow \infty} n p(n)$.

The proofs are left to the reader as exercises in using independence.

A common phenomenon in the study of random graphs is the existence of a threshold function for a given property, where the probability that a random graph has that property tends to 0 if it grows asymptotically slower than the threshold, to 1 if it grows asymptotically faster, and undetermined in the critical case. The following result is an example of a sharp threshold:

Theorem 1 (Sharp threshold for connectivity).
Suppose that $p(n)=\lambda \ln (n) / n$ for a constant $\lambda>0$.
a. If $\lambda<1$, then $\mathbb{P}(\mathcal{G}(n, p(n))$ is connected $) \rightarrow 0$.
b. If $\lambda>1$, then $\mathbb{P}(\mathcal{G}(n, p(n))$ is connected $) \rightarrow 1$.
c. If now $p(n)=(\ln (n)+c) / n$ for $c \in \mathbb{R}$, then $\mathbb{P}(\mathcal{G}(n, p(n))$ is connected $) \rightarrow \exp \left(-e^{-c}\right)$.

Proof for $\lambda<1$. Let X_{n} be the number of isolated vertices in $G \sim \mathcal{G}(n, p(n))$, so that $\mathbb{P}\left(X_{n}>\right.$ $0) \rightarrow 1$ suffices to show that G is almost surely disconnected as $n \rightarrow \infty$. Now let us use the second moment method presented in the note on concentration inequalities:

$$
\mathbb{P}\left(X_{n}=0\right) \leq \frac{\operatorname{var}\left(X_{n}\right)}{\mathbb{E}\left(X_{n}^{2}\right)}
$$

Here, we will actually use a weaker bound that is simpler to work with. By Chebyshev's inequality,

$$
\mathbb{P}\left(X_{n}=0\right) \leq \mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right| \geq \mathbb{E}\left(X_{n}\right)\right) \leq \frac{\operatorname{var}\left(X_{n}\right)}{\mathbb{E}\left(X_{n}\right)^{2}}
$$

Alternatively, the definition of variance gives the same bound:

$$
\operatorname{var}\left(X_{n}\right)=\sum_{x=0}^{\infty} \mathbb{P}\left(X_{n}=x\right) \cdot\left(x-\mathbb{E}\left(X_{n}\right)\right)^{2} \geq \mathbb{P}\left(X_{n}=0\right) \cdot \mathbb{E}\left(X_{n}\right)^{2}
$$

Let $q(n):=(1-p(n))^{n-1}$ be the probability that a vertex is isolated. Then

$$
\mathbb{E}\left(X_{n}\right)=\sum_{i=1}^{n} \mathbb{E}(\mathbb{1}\{\text { vertex } i \text { is isolated }\})=\sum_{i=1}^{n} \mathbb{P}(\text { vertex } i \text { is isolated })=n q(n)
$$

Using the first-order Taylor approximation $1-x \sim e^{-x}$ for $x \rightarrow 0$, where $f(n) \sim g(n)$ denotes asymptotic equivalence $f(n) / g(n) \rightarrow 1$,

$$
\mathbb{E}\left(X_{n}\right)=n\left(1-\frac{\lambda \ln (n)}{n}\right)^{n-1} \sim n \exp \left(-\frac{\lambda \ln (n)}{n} \cdot(n-1)\right) \sim n^{1-\lambda} \rightarrow \infty
$$

We can again write X_{n} as the sum of i.i.d. indicators $I_{i}:=\mathbb{1}\{$ vertex i is isolated $\}$ to find

$$
\begin{aligned}
\operatorname{var}\left(X_{n}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(I_{i}\right)+\sum_{i \neq j} \operatorname{cov}\left(I_{i}, I_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \cdot\left[\mathbb{E}\left(I_{1} I_{2}\right)-\mathbb{E}\left(I_{1}\right) \mathbb{E}\left(I_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =n \operatorname{var}(\operatorname{Bernoulli}(q(n)))+n(n-1) \cdot\left[\mathbb{P}(\text { vertices } 1 \text { and } 2 \text { are isolated })-\mathbb{E}\left(I_{1}\right)^{2}\right] \\
& =n\left(q(n)(1-q(n))+n(n-1) \cdot\left[(1-p(n))^{2 n-3}-q(n)^{2}\right]\right.
\end{aligned}
$$

Finally, noting that $(1-p(n))^{2 n-3}=q(n)^{2} /(1-p(n))$, we can simplify

$$
\begin{aligned}
\frac{\operatorname{var}\left(X_{n}\right)}{\mathbb{E}\left(X_{n}\right)^{2}} & =\frac{n q(n)(1-q(n))+n(n-1) \cdot p(n) q(n)^{2} /(1-p(n))}{(n q(n))^{2}} \\
& =\frac{1-q(n)}{n q(n)}+\frac{n-1}{n} \cdot \frac{p(n)}{1-p(n)} \\
& \rightarrow 0
\end{aligned}
$$

as $n q(n)=\mathbb{E}\left(X_{n}\right) \rightarrow \infty$ and $p(n) \rightarrow 0$.

Proof for $\lambda>1$. The key idea: a graph is disconnected iff it has a cut of size $1 \leq k \leq\lfloor n / 2\rfloor$, a partition into two subsets of k and $n-k$ vertices not connected by any crossing edge. By the union bound applied twice,

$$
\begin{aligned}
\mathbb{P}(\mathcal{G}(n, p(n)) \text { is disconnected }) & =\mathbb{P}\left(\bigcup_{k=1}^{\lfloor n / 2\rfloor}\{\text { there exists a cut of size } k\}\right) \\
& \leq \sum_{k=1}^{\lfloor n / 2\rfloor} \mathbb{P} \text { (there exists a cut of size } k \text {) } \\
& \leq \sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k} \cdot \mathbb{P}(\text { a particular set of } k \text { vertices is disconnected }) \\
& =\sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k}(1-p(n))^{k(n-k)} \\
& \leq \sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k} \exp (-k(n-k) p(n)) \\
& =\sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k} n^{-\lambda k(n-k) / n} .
\end{aligned}
$$

To show that this sum tends to 0 , we break it into two parts: cuts of almost negligible size and other cuts. As $\lambda>1$, we can choose $n^{*}:=\left\lfloor n\left(1-\lambda^{-1}\right)\right\rfloor$ so that $\lambda\left(n-n^{*}\right) / n>1$. Then

$$
\begin{aligned}
\sum_{k=1}^{n^{*}}\binom{n}{k} n^{-\lambda k(n-k) / n} & \leq \sum_{k=1}^{n^{*}} n^{-\lambda k(n-k) /(n-1)} \\
& \leq \sum_{k=1}^{n^{*}} n^{-\lambda k\left(n-n^{*}\right) /(n-1)}
\end{aligned}
$$

$$
\leq \frac{n^{-\lambda\left(n-n^{*}\right) /(n-1)}}{1-n^{-\lambda\left(n-n^{*}\right) /(n-1)}}
$$

tends to 0 . As for the second part of the sum, we bound the binomial coefficient:

$$
\binom{n}{k} \leq \frac{n^{k}}{k!}=\left(\frac{n}{k}\right)^{k} \frac{k^{k}}{k!} \leq\left(\frac{n}{k}\right)^{k} \sum_{i=0}^{\infty} \frac{k^{i}}{i!}=\left(\frac{n}{k}\right)^{k} e^{k}
$$

Using this bound,

$$
\begin{aligned}
\sum_{k=n^{*}+1}^{\lfloor n / 2\rfloor}\binom{n}{k} n^{-\lambda k(n-k) / n} & \leq \sum_{k=n^{*}+1}^{\lfloor n / 2\rfloor}\left(\frac{n^{1-\lambda(n-k) / n}}{k}\right)^{k} e^{k} \\
& \leq \sum_{k=n^{*}+1}^{\lfloor n / 2\rfloor}\left(\frac{n^{1-\lambda(n-k) / n}}{n^{*}+1}\right)^{k} e^{k} \\
& \leq \sum_{k=n^{*}+1}^{\lfloor n / 2\rfloor}\left(\frac{n^{-\lambda(n-k) / n}}{1-\lambda^{-1}}\right)^{k} e^{k} \\
& \leq \sum_{k=n^{*}+1}^{\lfloor n / 2\rfloor}\left(\frac{n^{-\lambda / 2}}{1-\lambda^{-1}}\right)^{k} e^{k}
\end{aligned}
$$

Since $n^{-\lambda / 2} \sim e n^{-\lambda / 2} /\left(1-\lambda^{-1}\right)<\delta$ for some $\delta<1$,

$$
\leq \sum_{k=n^{*}}^{\infty} \delta^{k}=\frac{\delta^{n^{*}}}{1-\delta}
$$

As $n^{*} \rightarrow \infty$, the second part of the sum tends to 0 as well, and we are finally done.

Thresholds are also known as phase transitions. Beyond Theorem 1, there are many, many other interesting phase transitions to explore, of which Erdős and Rényi's 1959 and 1960 papers provide a good introduction, and some of which we list below.

Theorem 2 (Phase transitions for connected components).
Let $G \sim \mathcal{G}(n, p)$. As $n \rightarrow \infty$,
a. If $n p<1$, then G will almost surely have no connected components of size $>O(\log (n))$.
b. If $n p=1$, then G will almost surely have a largest component of size $\sim n^{2 / 3}$.
c. If $n p \rightarrow c>1$, then G will almost surely have a unique giant component containing a positive fraction of the vertices, and no other component will be of size $>O(\log (n))$.

