## Note 17. Random graphs

Alex Fu

Fall 2022

Weighted, directed transition diagrams describe random one-directional transitions through time, but simply undirected graphs can also describe the relation of *connectivity*. The study of random graphs is largely focused on finding the regularity presented in random connectivity, especially asymptotic behaviors and *thresholds*, for instance in the evolution of random networks.

A good starting point would be a definition of a uniformly random graph. Uniform(Graph(n, m)), the uniform distribution over the set of all undirected graphs with n vertices and m edges, is one such definition, but we will focus on another, more popular "uniform" model.

**Definition 1** (Erdős–Rényi random graph).

The **Erdős–Rényi model** of random graphs is the probability distribution  $\mathcal{G}(n, p)$  over graphs with n vertices such that every possible edge appears independently with probability  $p \in [0, 1]$ . Equivalently, the probability of any undirected graph with m edges is

$$p^m(1-p)^{\binom{n}{2}-m}.$$

p is often denoted p(n) for its dependence on n. The trivial cases of p = 0 and p = 1 are the empty graph and the complete graph  $K_n$  respectively, while the case of  $p = \frac{1}{2}$  defines a uniform distribution over all graphs with n vertices.

**Proposition 1** (Basic properties of ER graphs).

- a. The expected number of edges in  $G \sim \mathcal{G}(n, p)$  is  $\binom{n}{2}p$ .
- b. The degree of any particular vertex is distributed as Binomial(n-1, p), so its expected number of neighbors is (n-1)p.
- c. The probability that any given vertex is isolated is  $(1-p)^{n-1}$ .
- d. The distribution of deg v converges to Poisson( $\lambda$ ) as  $n \to \infty$  if  $\lambda = \lim_{n \to \infty} np(n)$ .

The proofs are left to the reader as exercises in using independence.

A common phenomenon in the study of random graphs is the existence of a *threshold function* for a given property, where the probability that a random graph has that property tends to 0 if it grows asymptotically slower than the threshold, to 1 if it grows asymptotically faster, and undetermined in the critical case. The following result is an example of a *sharp* threshold:

**Theorem 1** (Sharp threshold for connectivity).

Suppose that 
$$p(n) = \lambda \ln(n)/n$$
 for a constant  $\lambda > 0$ .

a. If 
$$\lambda < 1$$
, then  $\mathbb{P}(\mathcal{G}(n, p(n)) \text{ is connected}) \to 0$ .

- b. If  $\lambda > 1$ , then  $\mathbb{P}(\mathcal{G}(n, p(n)) \text{ is connected}) \to 1$ .
- c. If now  $p(n) = (\ln(n) + c)/n$  for  $c \in \mathbb{R}$ , then  $\mathbb{P}(\mathcal{G}(n, p(n)))$  is connected)  $\to \exp(-e^{-c})$ .

Proof for  $\lambda < 1$ . Let  $X_n$  be the number of isolated vertices in  $G \sim \mathcal{G}(n, p(n))$ , so that  $\mathbb{P}(X_n > 0) \rightarrow 1$  suffices to show that G is almost surely disconnected as  $n \rightarrow \infty$ . Now let us use the second moment method presented in the note on concentration inequalities:

$$\mathbb{P}(X_n = 0) \le \frac{\operatorname{var}(X_n)}{\mathbb{E}(X_n^2)}.$$

Here, we will actually use a weaker bound that is simpler to work with. By Chebyshev's inequality,

$$\mathbb{P}(X_n = 0) \le \mathbb{P}(|X_n - \mathbb{E}(X_n)| \ge \mathbb{E}(X_n)) \le \frac{\operatorname{var}(X_n)}{\mathbb{E}(X_n)^2}.$$

Alternatively, the definition of variance gives the same bound:

$$\operatorname{var}(X_n) = \sum_{x=0}^{\infty} \mathbb{P}(X_n = x) \cdot (x - \mathbb{E}(X_n))^2 \ge \mathbb{P}(X_n = 0) \cdot \mathbb{E}(X_n)^2.$$

Let  $q(n):=(1-p(n))^{n-1}$  be the probability that a vertex is isolated. Then

$$\mathbb{E}(X_n) = \sum_{i=1}^n \mathbb{E}(\mathbb{1}\{\text{vertex } i \text{ is isolated}\}) = \sum_{i=1}^n \mathbb{P}(\text{vertex } i \text{ is isolated}) = nq(n).$$

Using the first-order Taylor approximation  $1 - x \sim e^{-x}$  for  $x \to 0$ , where  $f(n) \sim g(n)$  denotes asymptotic equivalence  $f(n)/g(n) \to 1$ ,

$$\mathbb{E}(X_n) = n\left(1 - \frac{\lambda \ln(n)}{n}\right)^{n-1} \sim n \exp\left(-\frac{\lambda \ln(n)}{n} \cdot (n-1)\right) \sim n^{1-\lambda} \to \infty.$$

We can again write  $X_n$  as the sum of i.i.d. indicators  $I_i := 1$  {vertex i is isolated} to find

$$\operatorname{var}(X_n) = \sum_{i=1}^n \operatorname{var}(I_i) + \sum_{i \neq j} \operatorname{cov}(I_i, I_j)$$
$$= n \operatorname{var}(I_1) + n(n-1) \cdot \left[\mathbb{E}(I_1 I_2) - \mathbb{E}(I_1) \mathbb{E}(I_2)\right]$$

$$= n \operatorname{var}(\operatorname{Bernoulli}(q(n))) + n(n-1) \cdot [\mathbb{P}(\operatorname{vertices} 1 \text{ and } 2 \text{ are isolated}) - \mathbb{E}(I_1)^2]$$

$$= n(q(n)(1-q(n)) + n(n-1) \cdot [(1-p(n)))^{2n-3} - q(n)^2].$$
Finally, noting that  $(1-p(n))^{2n-3} = q(n)^2/(1-p(n))$ , we can simplify
$$\frac{\operatorname{var}(X_n)}{\mathbb{E}(X_n)^2} = \frac{nq(n)(1-q(n)) + n(n-1) \cdot p(n)q(n)^2/(1-p(n))}{(nq(n))^2}$$

$$= \frac{1-q(n)}{nq(n)} + \frac{n-1}{n} \cdot \frac{p(n)}{1-p(n)}$$

$$\to 0$$

as  $nq(n) = \mathbb{E}(X_n) \to \infty$  and  $p(n) \to 0$ .

Proof for  $\lambda > 1$ . The key idea: a graph is disconnected iff it has a cut of size  $1 \le k \le \lfloor n/2 \rfloor$ , a partition into two subsets of k and n - k vertices not connected by any crossing edge. By the union bound applied twice,

$$\begin{split} \mathbb{P}(\mathcal{G}(n,p(n)) \text{ is disconnected}) &= \mathbb{P}\Biggl(\bigcup_{k=1}^{\lfloor n/2 \rfloor} \{\text{there exists a cut of size } k\}\Biggr) \\ &\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \mathbb{P}(\text{there exists a cut of size } k) \\ &\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \cdot \mathbb{P}(\text{a particular set of } k \text{ vertices is disconnected}) \\ &= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} (1-p(n))^{k(n-k)} \\ &\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \exp(-k(n-k)p(n)) \\ &= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{-\lambda k(n-k)/n}. \end{split}$$

To show that this sum tends to 0, we break it into two parts: cuts of almost negligible size and other cuts. As  $\lambda > 1$ , we can choose  $n^* := \lfloor n(1 - \lambda^{-1}) \rfloor$  so that  $\lambda(n - n^*)/n > 1$ . Then

$$\sum_{k=1}^{n^*} \binom{n}{k} n^{-\lambda k(n-k)/n} \le \sum_{k=1}^{n^*} n^{-\lambda k(n-k)/(n-1)}.$$
$$\le \sum_{k=1}^{n^*} n^{-\lambda k(n-n^*)/(n-1)}.$$

$$\leq \frac{n^{-\lambda(n-n^*)/(n-1)}}{1-n^{-\lambda(n-n^*)/(n-1)}}$$

tends to 0. As for the second part of the sum, we bound the binomial coefficient:

$$\binom{n}{k} \le \frac{n^k}{k!} = \left(\frac{n}{k}\right)^k \frac{k^k}{k!} \le \left(\frac{n}{k}\right)^k \sum_{i=0}^{\infty} \frac{k^i}{i!} = \left(\frac{n}{k}\right)^k e^k.$$

Using this bound,

$$\sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{-\lambda k(n-k)/n} \leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \left(\frac{n^{1-\lambda(n-k)/n}}{k}\right)^k e^k$$
$$\leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \left(\frac{n^{1-\lambda(n-k)/n}}{n^*+1}\right)^k e^k$$
$$\leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \left(\frac{n^{-\lambda(n-k)/n}}{1-\lambda^{-1}}\right)^k e^k$$
$$\leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \left(\frac{n^{-\lambda(n-k)/n}}{1-\lambda^{-1}}\right)^k e^k$$

Since  $n^{-\lambda/2} \sim e n^{-\lambda/2}/(1-\lambda^{-1}) < \delta$  for some  $\delta < 1$  ,

$$\leq \sum_{k=n^*}^{\infty} \delta^k = \frac{\delta^{n^*}}{1-\delta}.$$

As  $n^* \to \infty$ , the second part of the sum tends to 0 as well, and we are finally done.

Thresholds are also known as **phase transitions**. Beyond Theorem 1, there are many, many other interesting phase transitions to explore, of which Erdős and Rényi's 1959 and 1960 papers provide a good introduction, and some of which we list below.

**Theorem 2** (Phase transitions for connected components).

Let 
$$G \sim \mathcal{G}(n, p)$$
. As  $n \to \infty$ 

- a. If np < 1, then G will almost surely have no connected components of size  $> O(\log(n))$ .
- b. If np = 1, then G will almost surely have a largest component of size  $\sim n^{2/3}$ .
- c. If  $np \to c > 1$ , then G will almost surely have a unique giant component containing a positive fraction of the vertices, and no other component will be of size  $> O(\log(n))$ .