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1 Definitions

One of the most common multivariate or vector-valued distributions is the natural generalization
of the normal distribution N (µ, σ2), which shares one of its central properties.

Theorem 1 (Multivariate central limit theorem*).

Let X1,X2, . . . be i.i.d. random vectors with mean µ and covariance matrix Σ, and let the
sample mean be X̄n = 1

n

∑n
i=1Xi. Then

√
n
(
X̄n − µ

) d→ N (0,Σ)

describes convergence in distribution to the multivariate normal distribution.

Definition 1 (Multivariate normal distribution, or jointly Gaussian random variables I).

Let Z ∈ Rm be the standard normal random vector, whose entries Zi are i.i.d. N (0, 1). Then
X ∈ Rn follows the multivariate normal distribution if it is an affine combination of Z:
there exist A ∈ Rn×m and µ ∈ Rn such that

X = AZ+ µ.

If X follows the multivariate normal distribution, we say that the entries of X, the random
variables X1, . . . , Xn, are jointly Gaussian.

The mean of X is the random vector E(X) = µ, the covariance (matrix) of X is var(X) =
Σ = AAT, and the distribution of X is denoted N (µ,Σ). The multivariate normal distribution
is uniquely parametrized by its mean and covariance.

Let us verify the mean and covariance of X = AZ+ µ. By the linearity of expectation,

E(X) = AE(Z) + µ = µ
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var(X) = E
(
(X− µ)(X− µ)T

)
= E

(
(AZ)(AZ)T

)
= AE

(
ZZT

)
AT = AAT.

Conversely, given any covariance matrix Σ ∈ Rn×n, which must be positive semidefinite, we can
find its square root A ∈ Rn×m such that AAT = Σ.

By the spectral theorem, the symmetric matrix Σ can be decomposed as UΛUT, where U is an
orthonormal matrix of its eigenvectors and Λ is a diagonal matrix of its nonnegative eigenvalues.
Λ also admits a square root Λ1/2, given by (Λ1/2)i,j = (Λi,j)

1/2. Then a possible square root of
Σ is A = UΛ1/2UT, or A = UΛ1/2.

The square root A = UΛ1/2 also gives rise to a geometric interpretation:

X ∼ N (µ,Σ) ↔ X ∼ µ+ UΛ1/2N (0, I)

so every N (µ,Σ) is simply the multivariate standard normal distribution N (0, I) scaled by Λ1/2,
rotated by U , and translated by µ. In other words, every N (µ,Σ) is an affine transformation of
N (0, I), just as every N (µ, σ2) is an affine transformation of N (0, 1).

Definition 2 (Multivariate normal distribution, or jointly Gaussian random variables II).

Equivalently, the random variables X1, . . . , Xn are jointly Gaussian if any linear combination
of them follows the (univariate) Gaussian distribution:

cTX = c1X1 + · · ·+ cnXn ∼ N (µ, σ2) for some µ, σ2 ∈ R.

Let us show that Definition 2 is equivalent to Definition 1. Given X ∼ N (µ,Σ),

cTX = cT(AZ+ µ) =
n∑

i=1

ci(rowi(A)Z+ µi) =
n∑

i=1

ciµi +
n∑

i=1

m∑
j=1

ciAi,jZj

is an affine combination of the independent Zi ∼ N (0, 1), which we know is normally distributed
as well. Conversely, given jointly Gaussian X1, . . . , Xn, we will need the following result.

Proposition 1 (Moment-generating function of the multivariate normal distribution*).

The joint moment-generating function of X ∼ N (µ,Σ) is

MX(t) = E
(
exp(tTX)

)
= exp

(
tTµ+

1

2
tTΣt

)
.

Proof that Definition 2 implies Definition 1. Let Y = cTX be distributed as N (µ, σ2), where

µ = cT E(X)

σ2 = cT E
(
(X− E(X))(X− E(X))T

)
c.
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Then, we observe that MX(c) = E
(
exp(cTX)

)
is precisely equal to

MY (1) = E(exp(Y )) = exp

(
µ+

1

2
σ2

)
= exp

(
cT E(X) +

1

2
cT E

(
(X− E(X))(X− E(X))T

)
c

)
,

the moment-generating function of a multivariate normal distribution.

Proposition 2 (Dot product of multivariate normal distribution).

If X ∼ N (µ,Σ), then the dot product uTX is distributed as N (uµ,uTΣu). In particular, if
u is a unit vector, then (uTX)u is the projection of X onto the direction of u.

2 Properties

Affine combinations are a key part of both definitions of jointly Gaussian random variables, so
they unsurprisingly turn out to be involved in key properties as well.

Proposition 3 (Family of distributions closed under affine combinations).

Let X ∼ N (µ,Σ), let A ∈ Rℓ×n, and let b ∈ Rℓ. Then the affine combination AX + b is
also normally distributed as N (Aµ+ b, AΣAT).

Proof. By definition, X = Σ1/2Z+ µ for some standard normal random vector Z ∈ Rm, so

Y = AX+ b = (AΣ1/2)Z+ (Aµ+ b)

is also normally distributed.

In particular, linear combinations of jointly Gaussian random variables are jointly Gaussian as well.
Another key property of the multivariate normal distribution is that the first and second moments
are sufficient information to fully determine it. The moment-generating function was uniquely
determined by µ and Σ, and so is its inverse Laplace transform, the probability density function.

Proposition 4 (Probability density function of the multivariate normal distribution*).

Recall that Σ is positive semidefinite, so Σ is invertible iff it is positive definite. Then the pdf
of X ∼ N (µ,Σ), which exists iff Σ is positive definite, is equal to

fX(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.
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Figure 1: The density of a 2-dimensional multivariate normal distribution.

We note that the density function above forms a figure encompassing 3-dimensional volume. If
Σ is noninvertible, so that its determinant is zero, and one or more dimensions are collapsed,
then the figure formed is degenerate: even if it may have nonzero area, it has zero volume. Then
there is no meaningful density for “probability mass 1 per zero volume.”

We can also see that the projections onto the individual axes, the marginal distributions Xi, are
themselves 1-dimensional Gaussian distributions. In fact, any vertical “slice” of the figure in any
direction, such as along the line x1 + 2x2 = 5, will be 1-dimensional Gaussian, which describes
that any affine combination of the Xi is normal — Definition 2.

“Finding an affine combination of Xi is like taking a picture of a mountain from the side.”

The intersection of fX with any vertical plane is Gaussian, so what about its intersection with a
horizontal plane? We observe that the significant term in the pdf is

g(x) = (x− µ)TΣ−1(x− µ).

The level curves of g are the sets of points which have the same value of g, which means that
they have equal probability density: the level curves of g are the level curves of fX.

Proposition 5 (Level curves of fX*).

The level curves of the pdf are hyperellipsoids, multidimensional generalizations of ellipses.

1. In the case of Σ = I, the level curves of

g(x) = xTΣ−1x = ∥x∥22
are circles, or more generally hyperspheres, which have constant radius, centered at µ.
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2. In the case of Σ = Λ, a positive diagonal matrix, the level curves of

g(x) = xTΛ−1x =
n∑

i=1

1

λi

x2
i

are now hyperellipsoids centered at µ, whose axes are parallel to the coordinate axes, and
whose semiaxis length in the ith coordinate direction is (λi)

1/2.

3. In the general case, where Σ = UΛUT, the level curves of

g(x) = (UTx)TΛ−1UTx =
n∑

i=1

1

λi

(UTx)2i

are again hyperellipsoids with the same semiaxis lengths, but whose axes are in the directions
given by the columns of U .

We again note that the semiaxis lengths (λi)
1/2 are given by scaling, the axis directions coli(U)

given by rotation, the center µ given by translation, and the “standard” level curves given by
hyperspheres centered at the origin, analogously to how N (µ,Σ) = µ+ UΛ1/2N (0, I).

The following point deserves emphasis.

Proposition 6.

Jointly Gaussian implies marginally Gaussian, but not the converse.

Only when the joint distribution of X1, . . . , Xn is Gaussian do these properties apply, not when
X1, . . . , Xn is any collection of marginally Gaussian random variables, which can be related in
arbitrary ways that most often cannot be summarized by only the first two moments.

Proposition 7 (Independent iff uncorrelated).

Jointly Gaussian random variables are independent iff they are uncorrelated.

Proof. Independence implies uncorrelatedness in general, so we show the converse, though only
for positive definite Σ. As cov(Xi, Xj) = 0 for all i ̸= j, the covariance Σ is diagonal. Then

fX(x) =
1√

(2π)n (
∏n

i=1 σi)
exp

(
−1

2

n∑
i=1

(xi − µi)
2

σ2
i

)

=
n∏

i=1

1√
2πσi

exp

(
−1

2

(xi − µi)
2

σ2
i

)

=
n∏

i=1

fXi
(xi).
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Example 1 (Uncorrelated but not independent marginally Gaussian random variables).

Let X ∼ N (0, 1), and let Y = WX, where W is Rademacher and independent of X. Then
X and Y are uncorrelated,

cov(X, Y ) = E(WX2)− E(X)E(WX) = E(W )E(X2)− 0 = 0,

but not independent, as

P(X ≤ −1 | Y = 0) = 0 ̸= P(X ≤ −1).

As a consequence of Proposition 7, we find another simplification in estimation, where the LLSE
only involves entries in µ and Σ.

Proposition 8 (MMSE and LLSE are equivalent).

For jointly Gaussian random variables, E(X | Y ) = L(X | Y ).

Proof. In general, the MMSE is only equal to the LLSE if it is affine, so we will need to use the
special property that uncorrelatedness implies independendence.

By the orthogonality principle, X − L(X | Y ) is zero-mean and orthogonal to Y , which implies
that cov(X −L(X | Y ), Y ) = 0. As both are affine combinations of the jointly Gaussian X and
Y , they are thus also independent.

Functions of independent random variables are independent, so X −L(X | Y ) is independent of
every φ(Y ), which in turn implies orthogonality. Therefore E(X | Y ) = L(X | Y ).

In summary, the multivariate normal distribution for random vectors, whose entries are jointly
Gaussian, enjoys a special affinity with affine combinations and a unique characterization by
the first two moments, which reduces properties of the distribution such as level curves of the
PDF, independence, and the MMSE to simpler statements about the mean and covariance.

■
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