Note 19. Binary hypothesis testing

Alex Fu

Fall 2022

1 Introduction to inference

The first two modules of probability and random processes have lived in the realm of descriptive probability so far - extracting useful information from a given model, a mathematical description of some part of reality. For instance, we found probabilities given a sample space, conditional probabilities given an event, expectations given a random variable, moments given a distribution, class properties given a chain, times given a process, and so forth.

But rarely or almost never will we have a given model in practice, such as a full probability space, distribution, or Markov chain. Even if we did, no model is a perfect description of reality - the only unsimplified model is reality itself. What we have access to is partial, imperfect information: a small, finite number of samples; empirical frequencies of observed outcomes in collected data; measurements marred with uncertainty, errors, noise, biases, perturbations, or more.

The more realistic inverse problem - determining a model given limited information - is the subject of inferential probability. Its common goals may seem quite familiar to you: estimation, approximation, prediction, learning, training, classification, decision, regression, analysis, etc.

Our basic setup for inference is as follows. The random variable X describes some hidden, latent, or underlying true state of the world, whose exact value or distribution is unknown to us. The observation Y is partially determined by X, following a given model $Y \mid X$, and partially by some other randomness.

We wish to "reverse" the model $Y \mid X$ to obtain " $X \mid Y^{\text {" somehow. Bayes' rule tells us that }}$

$$
p_{X \mid Y}=\frac{p_{Y \mid X} \cdot p_{X}}{p_{Y}},
$$

but p_{X} is unknown! Thus our goal is to infer \hat{X}, a function of Y so that $\hat{X} \mid Y$ is almost $X \mid Y$. The inferred \hat{X} is usually optimal in the sense of minimizing a cost, loss, or objective function, such as a probability $\mathbb{P}(X \neq \hat{X})$, or a distance $\|X-\hat{X}\|$, often mean squared error.

2 Definitions

Definition 1 (Setup for binary hypothesis testing).
Let $X \in\{0,1\}$ represent a choice between two hypotheses: the two distributions of the null hypothesis H_{0} and the alternative hypothesis H_{1}. A single observation $Y \in \mathbb{R}$ is given, where $Y \sim H_{0}$ if $X=0$ and $Y \sim H_{1}$ if $X=1$.

We want to infer an optimal test or decision rule $\hat{X}=r(Y)$, which assigns 0 or 1 to every $y \in \mathbb{R}$ for which distribution y is more likely to have been drawn from. The assignments of $r(y)=0$ or $r(y)=1$ are failing to reject or rejecting the null hypothesis respectively.

The most common probabilities associated with hypothesis testing are

- The probability of type I error, false alarm (PFA), or false positive is the probability of incorrectly rejecting the null hypothesis,

$$
\alpha:=\mathbb{P}(\hat{X}=1 \mid X=0)=\mathbb{P}_{H_{0}}(\hat{X}=1)
$$

- The significance level $\alpha^{*} \in[0,1]$ is a preset upper bound on the PFA, often 0.05 . It should be lower when false alarms, such as false diagnoses of cancer, are more "costly."
- The probability of type II error, miss rate, or false negative rate is the probability of failing to rejecting an incorrect null hypothesis,

$$
\beta:=\mathbb{P}(\hat{X}=0 \mid X=1)=\mathbb{P}_{H_{1}}(\hat{X}=0)
$$

- The probability of correct detection (PCD) or power of a test is the probability of correcting rejecting an incorrect null hypothesis,

$$
1-\beta=\mathbb{P}(\hat{X}=1 \mid X=1)=\mathbb{P}_{H_{1}}(\hat{X}=1)
$$

Our optimization problem is to find the test which maximizes PCD given a constrained PFA:

$$
r^{*}=\underset{r: \mathbb{R} \rightarrow\{0,1\}}{\operatorname{argmax}} \mathbb{P}(r(Y)=1 \mid X=1) \quad \text { s.t. } \quad \mathbb{P}(r(Y)=1 \mid X=0) \leq \alpha^{*}
$$

Definition 2 (Rejection region; acceptance region).
An equivalent characterization of a decision rule r is in terms of the rejection region

$$
R:=\{y \in \mathbb{R}: r(y)=1\},
$$

the values of Y for which the test rejects the null hypothesis. Its complement, the acceptance region $A=R^{c}$, works equally well.

Example 1 (Motivating examples for terminology).
The null hypothesis has its name because it is typically the hypothesis of no effect, also called a negative result: a lack of cancer, fire, or defect. The alternative hypothesis often describes a positive result, which may be undesirable: the presence of cancer, fire, or defect. The test or alarm tries to detect a positive result, and either hits or misses.

We work conservatively, as if the null hypothesis is true, until there is strong enough evidence to reject the null, usually a significant positive result, for which $\mathbb{P}_{H_{1}}$ (result) is far more likely than $\mathbb{P}_{H_{0}}$ (result). We will never "accept" the null hypothesis as true, only fail to reject it due to a lack of significant evidence pointing to the alternative hypothesis.

An important class of hypotheses involves a bit of confusing notation (to us). Let Θ be a space of parameters, and let θ^{*} be the true parameter by which the observation $X \sim \mathbb{P}\left(X=x ; \theta^{*}\right)$ is drawn. Then the hypotheses are $H_{0}: \theta \in \Theta_{0}$ and $H_{1}: \theta \in \Theta_{1}$, where Θ_{0} and Θ_{1} partition Θ. We work with simple hypotheses, where $\Theta_{0}=\left\{\theta_{0}\right\}$ and $\Theta_{1}=\left\{\theta_{1}\right\}$, so $H_{X}: \theta=\theta_{X}$.

An example is visualized below. Here, the two simple hypotheses are $H_{0}: \mu=-1$ and $H_{1}: \mu=1$. The PFA and PCD of an arbitrary rejection region are the highlighted areas under the distributions of H_{0} and H_{1} respectively.

Figure 1: A binary hypothesis test.
We find that the region of overlap characterizes the conflict of binary hypothesis testing: greater rejection of the null $\hat{X}=1$ increases PCD, but at the same time increases PFA. So a good test should selectively or greedily reject the null, favoring observations y that increase the PCD far more than they increase the PFA, which motivates the likelihood ratio.

3 The Neyman-Pearson likelihood ratio test

Definition 3 (Likelihood ratio).
The likelihood ratio of the observation $Y \in \mathbb{R}$ is the function

$$
L(y):=\frac{\mathbb{P}_{H_{1}}(y)}{\mathbb{P}_{H_{0}}(y)}=\frac{f_{Y \mid X}(y \mid 1)}{f_{Y \mid X}(y \mid 0)},
$$

the ratio between the probability that the value y is sampled from H_{1} to the probability that y is sampled from H_{0}.

A natural starting point for \hat{X} is the MLE: we reject the null at values for which $f_{Y \mid X}(y \mid 1)>$ $f_{Y \mid X}(y \mid 0)$, or $L(y)>1$. But a key problem is that we need fine control over $\alpha \leq \alpha^{*}$, as α^{*} is any significance level in $[0,1]$. As the PCD increases with the PFA, we can always try to achieve the maximum $\alpha=\alpha^{*}$ without any loss of generality.

So, we want the possible values of α of the test to range over $[0,1]$, but the MLE does not allow us this level of control. Instead, we can consider a threshold test:

$$
r(y)= \begin{cases}1 & \text { if } L(y)>\lambda \\ 0 & \text { otherwise }\end{cases}
$$

which has a threshold parameter $\lambda \in \mathbb{R}$ we can set depending on α^{*}. For instance, the MAP of X is a threshold test: if π is a prior distribution on X, then

$$
\hat{X}_{\mathrm{MAP}}=\mathbb{1}\left\{\mathbb{P}_{H_{1}}(y) \cdot \pi(1)>\mathbb{P}_{H_{0}}(y) \cdot \pi(0)\right\}=\mathbb{1}\left\{L(Y)>\frac{\pi(0)}{\pi(1)}\right\} .
$$

In general, it seems that a threshold test allows us to freely set α as

$$
\alpha=\mathbb{P}(r(Y)=1 \mid X=0)=\mathbb{P}(L(Y)>\lambda \mid X=0)
$$

But one problem arises when $L(Y)$ is discrete: even as $\lambda \in \mathbb{R}$ varies smoothly, the corresponding values of α will jump up and down discretely. For instance, consider the trivial example $H_{0}=H_{1}$ and $\alpha^{*}=0.5$, in which $L(Y)=1$ and $\alpha \in\{0,1\}$. This motivates randomization at the threshold:

$$
r(y)= \begin{cases}1 & \text { if } L(y)>\lambda \\ \operatorname{Bernoulli}(\gamma) & \text { if } L(y)=\lambda \\ 0 & \text { if } L(y)<\lambda\end{cases}
$$

for some randomization constant $\gamma \in[0,1]$. The choices of $\gamma=0$ or 1 bring us back to the simple threshold test, but let us see why randomization works more generally.

Consider the typical problematic scenario:

$$
\mathbb{P}_{H_{0}}(L(Y)>\lambda)<\alpha^{*}<\mathbb{P}_{H_{0}}(L(Y) \geq \lambda)
$$

so no choice of λ in a simple threshold test will allow us to set $\alpha=\alpha^{*}$ and maximize PCD . So, let us first approximate α^{*} as closely as we can without exceeding it:

$$
\begin{aligned}
\lambda^{*} & :=\underset{\lambda \in \mathbb{R}}{\operatorname{argmax}} \alpha(\lambda) \text { s.t. } \quad \alpha(\lambda) \leq \alpha^{*} \\
& =\inf \left\{\lambda: \alpha(\lambda) \leq \alpha^{*}\right\} .
\end{aligned}
$$

For convenience, we write $\alpha(\lambda):=\mathbb{P}_{H_{0}}(L(Y)>\lambda)$ for the value of α given by the choice of λ. If $\alpha\left(\lambda^{*}\right)=\alpha^{*}$ already, then we are done! Otherwise, we have found the threshold λ^{*} at which

$$
\alpha\left(\lambda^{*}\right)+0 \cdot \mathbb{P}_{H_{0}}\left(L(Y)=\lambda^{*}\right)<\alpha^{*} \leq \alpha\left(\lambda^{*}\right)+1 \cdot \mathbb{P}_{H_{0}}\left(L(Y)=\lambda^{*}\right),
$$

the same scenario we started with. α^{*} must fall in one of these intervals, and now we can use randomization to interpolate to "fill the gap" between $\alpha\left(\lambda^{*}\right)$ and α^{*} :

$$
\gamma=\frac{\alpha^{*}-\alpha\left(\lambda^{*}\right)}{\mathbb{P}_{H_{0}}\left(L(Y)=\lambda^{*}\right)} \in(0,1]
$$

Let us verify that we have achieved our initial goal: to be able to set $\alpha=\alpha^{*}$ for any $\alpha^{*} \in[0,1]$. If we find the threshold $\lambda=\lambda^{*}$ and randomization constant γ as above, then

$$
\begin{aligned}
\alpha & =\mathbb{P}_{H_{0}}(r(Y)=1) \\
& =\mathbb{P}_{H_{0}}(L(Y)>\lambda)+\mathbb{P}_{H_{0}}(L(Y)=\lambda, \text { Bernoulli }(\gamma)=1) \\
& =\mathbb{P}_{H_{0}}(L(Y)>\lambda)+\gamma \cdot \mathbb{P}_{H_{0}}(L(Y)=\lambda) \\
& =\alpha^{*} .
\end{aligned}
$$

For good measure, we can also find the rejection region of the test as

$$
R=\{y: L(y)>\lambda\} \cup\{y: L(y)=\lambda \wedge \operatorname{Bernoulli}(\gamma)=1\} .
$$

What was the point of the above? Well, we have just derived the optimal hypothesis test.
Theorem 1 (Neyman-Pearson lemma).
The Neyman-Pearson likelihood ratio test is the uniformly most powerful test among all tests with significance level at most α^{*}. That is, the solution to

$$
r^{*}=\underset{r: \mathbb{R} \rightarrow\{0,1\}}{\operatorname{argmax}} \mathbb{P}(r(Y)=1 \mid X=1) \quad \text { s.t. } \quad \mathbb{P}(r(Y)=1 \mid X=0) \leq \alpha^{*}
$$

is a threshold test with randomization,

$$
r^{*}(y)= \begin{cases}1 & \text { if } L(y)>\lambda \\ \operatorname{Bernoulli}(\gamma) & \text { if } L(y)=\lambda \\ 0 & \text { if } L(y)<\lambda\end{cases}
$$

for some threshold $\lambda \in \mathbb{R}$ and randomization constant $\gamma \in[0,1]$.

In other words, let $\alpha=\operatorname{PFA}\left(r^{*}\right)$ and $1-\beta=\operatorname{PCD}\left(r^{*}\right)$. If r^{\prime} has rejection region R^{\prime} and

$$
\begin{aligned}
\alpha^{\prime} & =\operatorname{PFA}\left(r^{\prime}\right)=\mathbb{P}_{H_{0}}\left(Y \in R^{\prime}\right) \leq \alpha \\
1-\beta^{\prime} & =\operatorname{PCD}\left(r^{\prime}\right)=\mathbb{P}_{H_{1}}\left(Y \in R^{\prime}\right),
\end{aligned}
$$

then $1-\beta^{\prime} \leq 1-\beta$. Furthermore, r^{*} is the unique optimal test with PFA α, so that $\alpha^{\prime}<\alpha$ implies $1-\beta^{\prime}<1-\beta$, or r^{\prime} is strictly less powerful.

Proof. Let R be the rejection region of r^{*}. We wish to show that

$$
\mathbb{P}_{H_{1}}(Y \in R) \geq \mathbb{P}_{H_{1}}\left(Y \in R^{\prime}\right),
$$

or equivalently, after subtracting the probability of the common region $Y \in R \cap R^{\prime}$,

$$
\int_{R \backslash R^{\prime}} L(y) \cdot \mathbb{P}_{H_{0}}(y) d y \geq \int_{R^{\prime} \backslash R} L(y) \cdot \mathbb{P}_{H_{0}}(y) d y
$$

We know that $L(y) \geq \lambda$ on R and $L(y)<\lambda$ on R^{c} by the definition of R. Moreover,

$$
\int_{R} \mathbb{P}_{H_{0}}(y) d y=\alpha \geq \alpha^{\prime}=\int_{R^{\prime}} \mathbb{P}_{H_{0}}(y) d y
$$

Then we are done after subtracting $\mathbb{P}_{H_{0}}\left(R \cap R^{\prime}\right)$ from both α and α^{\prime}.

$$
\mathbb{P}_{H_{1}}\left(R \backslash R^{\prime}\right) \geq \lambda \cdot \mathbb{P}_{H_{0}}\left(R \backslash R^{\prime}\right) \geq \lambda \cdot \mathbb{P}_{H_{0}}\left(R^{\prime} \backslash R\right) \geq \mathbb{P}_{H_{1}}\left(R^{\prime} \backslash R\right)
$$

Now suppose that r^{\prime} is another optimal test with $\alpha^{\prime}=\alpha$, so then $\beta^{\prime}=\beta$, and

$$
\int_{\mathbb{R}}\left(r^{*}(y)-r^{\prime}(y)\right) \cdot\left(\mathbb{P}_{H_{1}}(y)-\lambda \cdot \mathbb{P}_{H_{0}}(y)\right) d y=(\beta-\lambda \cdot \alpha)-\left(\beta^{\prime}-\lambda \cdot \alpha^{\prime}\right)=0
$$

By the definition of r^{*}, the integrand is nonnegative, so $r^{*}(y)-r^{\prime}(y) \neq 0$ is only possible on the event $\{L(Y)=\lambda\}=\left\{y: \mathbb{P}_{H_{1}}(y)-\lambda \cdot \mathbb{P}_{H_{0}}(y)=0\right\}$. If it has zero probability, then $r^{*}=r^{\prime}$ a.s.; otherwise, the randomization constants must also agree, so $r^{*}=r^{\prime}$ a.s., proving uniqueness.

Lastly, a technical note: Bernoulli (γ) is a random variable defined only on the event $\{L(Y)=\lambda\}$ and independent of X, so that the chain rule behaves as expected.

$$
\begin{aligned}
\mathbb{P}_{H_{0}}(L(Y)=\lambda, \text { Bernoulli }(\gamma)=1) & =\mathbb{P}_{H_{0}}(L(Y)=\lambda) \cdot \mathbb{P}_{H_{0}}(\text { Bernoulli }(\gamma)=1 \mid L(Y)=\lambda) \\
& =\mathbb{P}_{H_{0}}(L(Y)=\lambda) \cdot \gamma
\end{aligned}
$$

So with randomization, the rejection region R is not necessarily uniquely determined.

The constraint $\mathbb{P}_{H_{0}}(L(Y)>\lambda)+\gamma \cdot \mathbb{P}_{H_{0}}(L(Y)=\lambda) \leq \alpha^{*}$ now appears to depend on two unknowns, λ and γ, but the derivation above also gives us a useful procedure to determine both parameters from one inequality by first setting $\gamma=0$.

1. Find the likelihood ratio L.
2. Find the threshold λ without randomization.
3. Find the randomization constant γ if the PFA is still less than α^{*}.

4 Examples

$L(y)$ is often difficult to analyze, so we want to find a simpler equivalent condition to $L(y)>\lambda$. We can do so when $L(y)$ is monotonic: $\{L(Y)>\lambda\}$ is equivalent to $\{Y>t\}$, or $\{Y<t\}$, whose probability is known from the distribution of Y given in the hypotheses.

Example 2 (Normal hypotheses).
Let $Y \sim \mathcal{N}\left(X, \sigma^{2}\right)$, and let $\alpha^{*} \in[0,1]$. Then, let us first find the likelihood ratio:

$$
L(y)=\frac{f_{Y \mid X}(y \mid 1)}{f_{Y \mid X}(y \mid 0)}=\exp \left(-\frac{(x-1)^{2}}{2 \sigma^{2}}+\frac{x^{2}}{2 \sigma^{2}}\right)=\exp \left(\frac{2 x-1}{2 \sigma^{2}}\right) .
$$

We now observe that $L(y)$ is monotonically increasing: as H_{1} is "to the right of" H_{0}, a larger observed value gives a higher likelihood of $Y \sim H_{1}$. If the two hypotheses were swapped, $L(y)$ would instead be monotonically decreasing. In any case, the likelihood ratio test becomes

$$
r^{*}(Y)=\mathbb{1}\{Y>t\}
$$

for some threshold $t \in \mathbb{R}$. There is no randomization in the continuous case, as $\mathbb{P}(Y=t)=0$ for every $t \in \mathbb{R}$. Then the optimization problem becomes

$$
\underset{t \in \mathbb{R}}{\operatorname{argmax}} 1-\Phi\left(\frac{t-1}{\sigma}\right) \quad \text { s.t. } \quad 1-\Phi\left(\frac{t-0}{\sigma}\right)=\alpha^{*}
$$

after expanding $\alpha=\mathbb{P}_{H_{0}}(Y>t)$ and $1-\beta=\mathbb{P}_{H_{1}}(Y>t)$. We are done after finding

$$
t=\sigma \cdot \Phi^{-1}\left(1-\alpha^{*}\right) .
$$

Randomization is quite likely to appear in the case of discrete hypotheses.
Example 3 (Categorical hypotheses).
Let H_{0} and H_{1} be the categorical distributions ($0.2,0.3,0.5$) and ($0.8,0.1,0.1$) respectively, for the probabilities of drawing a red, green, or blue marble out of a jar, and let $\alpha^{*}=0.25$. We observe that the likelihood ratio is a discrete function of Y :

$$
L(y)= \begin{cases}4 & \text { if } y=\text { red } \\ \frac{1}{3} & \text { if } y=\text { green } \\ \frac{1}{5} & \text { if } y=\text { blue } .\end{cases}
$$

We also observe that for discrete likelihood ratios, the choice of the threshold λ is without loss of generality from the values taken on by $L(y)$. For instance, $\lambda=2$ defines almost the same rule as $\lambda=\frac{1}{3}$, except without randomization, the finer control we need.

Then, setting $\lambda=\frac{1}{3}$ and $\lambda=\frac{1}{5}$ result in the respective PFAs of

$$
\begin{array}{r}
\mathbb{P}_{H_{0}}(Y=\text { red })=0.2 \\
\mathbb{P}_{H_{0}}(Y \in\{\text { red }, \text { green }\})=0.5
\end{array}
$$

As $0.2<\alpha^{*}<0.5$, we take $\lambda=\frac{1}{3}$ and introduce randomization. We need

$$
\mathbb{P}_{H_{0}}(Y=\text { red })+\gamma \cdot \mathbb{P}_{H_{0}}(Y=\text { green })=\alpha^{*}
$$

from which we get $\gamma=\frac{1}{6}$. To see the effect of randomization, we can find the PCD with and without randomization:

$$
\begin{aligned}
\mathbb{P}_{H_{1}}(Y=\text { red })+\gamma \cdot \mathbb{P}_{H_{1}}(Y=\text { green }) & =0.8+\frac{1}{6} \cdot 0.1 \\
\mathbb{P}_{H_{1}}(Y=\text { red }) & =0.8
\end{aligned}
$$

The final example of tuning γ is also an example of a test optimal in the Neyman-Pearson sense, but nonoptimal in that it needlessly increases the PFA without increasing the PCD, in the case of $\alpha^{*}>\frac{1}{2}$. This demonstrates a problem with setting $\alpha=\alpha^{*}$ in general: if the hypotheses have no overlap, then a clean boundary with PFA $=0$ and $\mathrm{PCD}=1$ is the clear better choice over an overreactive Neyman-Pearson test that sets PFA $=\alpha^{*}$ and PCD $=1$.

Example 4 (Tuning the randomization constant).
Let $H_{0}: Y \sim$ Uniform $([-1,1])$ and $H_{1}: Y \sim$ Uniform $([0,2])$, and let α^{*} be given.

$$
L(y)=\frac{\mathbb{1}\{0 \leq y \leq 2\}}{\mathbb{1}\{-1 \leq y \leq 1\}}
$$

takes values in $\{0,1, \infty\}$, in particular on $[-1,0),[0,1]$, and $(1,2]$ respectively.
a. In the case of $\lambda=0$, we find $\frac{1}{2}+\frac{1}{2} \gamma=\alpha^{*}$.
b. In the case of $\lambda=1$, we find $\frac{1}{2} \gamma=\alpha^{*}$.
c. In the case of $\lambda=\infty$, we find the (mostly unsatisfiable) equation $0=\alpha^{*}$.

So, the Neyman-Pearson test sets $\lambda=1$ and $\gamma=2 \alpha^{*}$ for $0 \leq \alpha^{*} \leq \frac{1}{2}$, and sets $\lambda=0$ and $\gamma=2\left(\alpha^{*}-\frac{1}{2}\right)$ for $\frac{1}{2} \leq \alpha^{*} \leq 1$. By the remark above, the threshold $\lambda=0$ creates extraneous false alarms, which means that significance levels $\alpha^{*}>\frac{1}{2}$ do not make sense here.

We can describe this Neyman-Pearson test equivalently and more explicitly by its acceptance or rejection of the null for each of $Y \in[-1,0), Y \in[0,1]$, and $Y \in(1,2]$.

We have far from given a complete introduction to hypothesis testing, which is studied further in statistics. We encourage the reader to look further into one-tailed tests, two-tailed tests, and Bayesian testing if interested. For now, we leave with the following challenge: generalize the Neyman-Pearson test to n i.i.d. observations Y_{1}, \ldots, Y_{n}.

