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1 Maximum likelihood estimation

We now turn away from the problem of hypothesis testing, determining which of several given
hypotheses, distributions, or classes is most likely, to the similar problem of estimation, finding
the most likely value out of a usually larger space of possible values.

Definition 1 (Setup for maximum likelihood estimation).

Let X be a random variable for the underlying state or true parameter, and let X ∼ π be
the prior distribution. Y is a random variable for the given observation, which is drawn from
the model pY |X . The posterior distribution of X is pX|Y , where

pX|Y (x | y) = P(X = x | Y = y) =
pY |X(y | x) · π(x)∑
x̃∈S pY |X(y | x̃) · π(x̃)

by Bayes’ rule and the law of total probability. Note that pX|Y ∝ pY |X ·π, as the normalizing
constant P(Y = y) is fixed by y. In particular, if π is uniform or uninformative — we have
no information about the distribution of X — then pX|Y ∝ pY |X .

Definition 2 (Maximum likelihood estimator).

The maximum likelihood estimator (MLE) of X given Y is the function of Y

X̂MLE(y) = argmax
x

P(Y = y | X = x).

Note that we do not have to find any probabilities to find the MLE, as the model pY |X is given.

A common informal principle is that the MLE estimate is most often “the parameter that makes
the most sense,” such as the expected value or maximum, as we find in the following examples.
The MLE can thus be thought of as the “most likely explanation” X = x for Y = y.
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Proposition 1 (MLE minimizes KL divergence asymptotically*).

We use a different conventional notation (θ,X)← (X, Y ). Let θ∗ be an unknown parameter,
and let x1, . . . , xn be i.i.d. samples drawn from the distribution Pθ∗ : x 7→ p(x | θ∗). Then
the MLE of θ is the parameter which minimizes DKL(Pθ̂MLE

∥ Pθ∗) as n→∞, and θ̂MLE = θ∗

if θ∗ belongs to the space of estimation.

Proof. We maximize the log-likelihood function and use the law of large numbers to find

θ̂MLE(x1, . . . , xn) = argmax
θ

n∏
i=1

p(xi | θ) = argmax
θ

n∑
i=1

(ln p(xi | θ)− ln p(xi | θ∗))

= argmin
θ

1

n

n∑
i=1

ln
p(xi | θ∗)
p(xi | θ)

→ argmin
θ

E
(
ln

p(x | θ∗)
p(x | θ)

)
= argmin

θ

∫
p(x | θ∗) ln p(x | θ∗)

p(x | θ)
dx

= argmin
θ

DKL(Pθ∗ ∥ Pθ)

= argmin
θ

H(Pθ∗ ,Pθ).

Recall that the cross entropy is H(Pθ∗ ,Pθ) = H(Pθ∗) +DKL(Pθ∗ ∥ Pθ). In the interpretation of
KL divergence as “distance between distributions” and cross entropy as “entropy when the wrong
distribution is assumed,” the “most likely” distribution Pθ̂MLE

is also “closest” to Pθ∗ .

Example 1 (Parameter of uniform distribution).

Let X ≥ 0 be unknown, and let Y ∼ Uniform([0, X]). Then the MLE of X given Y is

X̂MLE(y) = argmax
x

fY |X(y | x) = argmax
x

1

x
· 10≤y≤x = y.

That is, the MLE is simply the observation, as Y = y is most likely given X = Y .

Example 2 (Mean of normal distribution I).

Let X = µ, and let Y ∼ N (µ, σ2). Then the MLE of X given Y is

X̂MLE(y) = argmax
x

ln fY |X(y | x) = argmax
x

(
−(y − x)2

2σ2

)
= y.
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Example 3 (Mean of normal distribution II).

Let X = µ, and now let Y1, . . . , Yn be i.i.d. samples drawn from N (µ, σ2). Then

X̂MLE(y1, . . . , yn) = argmax
x

n∏
i=1

exp

(
−(yi − x)2

2σ2

)
= argmin

x

n∑
i=1

(yi − x)2

is the minimizer of the ordinary least squares error, which we can find by differentiation:

d

dx

n∑
i=1

(yi − x)2 = −
n∑

i=1

2(yi − x) = 0

when x is the average of the observations. That is,

µ̂MLE(y1, . . . , yn) =
1

n

n∑
i=1

yi.

Example 4 (Parameters of random graph I).

Let p ∈ [0, 1], let X = n, and let Y = m be the number of edges in G ∼ G(n, p). Then

n̂MLE(m) = argmax
n

ln
(
pm · (1− p)(

n
2)−m

)
= argmax

n

((
n

2

)
−m

)
ln(1− p)

is the largest value of n ∈ N so that
(
n
2

)
≤ m.

Example 5 (Parameters of random graph II).

Let X = p ∈ [0, 1] be unknown, and suppose that Y = G ∼ G(n, p) has m edges. Then

p̂MLE(G) = argmax
p

[
m · ln(p) +

((
n

2

)
−m

)
· ln(1− p)

]
can be found by differentiation with respect to p:

d

dp

[
m · ln(p) +

((
n

2

)
−m

)
· ln(1− p)

]
=

m

p
+

m

1− p
−

(
n
2

)
(1− p)

=
1

p(1− p)

(
m−

(
n

2

)
p

)
is 0 when m =

(
n
2

)
p, which is precisely the expected number of edges. That is,

p̂MLE(G) =
m(
n
2

) .
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2 Maximum a posteriori estimation

Definition 3 (Maximum a posteriori estimator).

The maximum a posteriori (MAP) estimate of X given by Y is the function of Y

X̂MAP(y) = argmax
x

P(X = x | Y = y) = argmax
x

P(X = x, Y = y).

The MLE is the special case of the MAP when the prior distribution is uniform. In general, the
MAP estimate may not be the same as the MLE, as the posterior pX|Y or joint distribution pX,Y

is weighted by the prior π, which we find in the following examples.

Example 6 (Parameter of uniform distribution, again).

The MAP estimate of X ∼ Uniform([0, 1]) given Y ∼ Uniform([0, X]) is

X̂MAP(y) = argmax
x

fY |X(y | x) · π(x) = argmax
x

fY |X(y | x) = X̂MLE(y) = y.

If the prior is instead X ∼ Bernoulli(1
4
) + 1, then

X̂MAP(y) = argmax
x

1

4
· 1x=1,0≤y≤1 +

3

8
· 1x=2,0≤y≤2 = 2.

Example 7 (Mean of normal distribution, again).

Now suppose that X = µ ∼ N (µ∗, σ
2
∗), and let Y1, . . . , Yn ∼ N (X, σ2

i ) i.i.d. Then

X̂MAP(y1, . . . , yn) = argmax
x

ln π(x) +
n∑

i=1

ln fYi|X(yi | x)

= argmin
x

(x− µ∗)
2

σ2
∗

+
n∑

i=1

(yi − x)2

σ2
i

d

dx

[
(x− µ∗)

2

σ2
∗

+
n∑

i=1

(yi − x)2

σ2
i

]
=

2(x− µ∗)

σ2
∗

+
n∑

i=1

2(x− yi)

σ2
i

= 2

(
1

σ2
∗
+

n∑
i=1

1

σ2
i

)
x− 2

(
µ∗

σ2
∗
+

n∑
i=1

yi
σ2
i

)

µ̂MAP(y1, . . . , yn) =
1

1
σ2
∗
+
∑n

i=1
1
σ2
i

(
µ∗

σ2
∗
+

n∑
i=1

yi
σ2
i

)
.
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