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1 Introduction

Real-valued random variables X : Ω → R are functions. Collections of functions naturally form
function spaces, which often inherit certain structures on the domain or codomain. For instance,
functions to a vector space V themselves form a vector space, under the operations

(f + g)(x) := f(x) + g(x)

(cf)(x) := cf(x).

We have also seen how functions can converge to a limit pointwise when convergence makes
sense in the codomain. For another example, the norm of a linear mapping can be defined as

∥f∥op := sup
x ̸=0

∥f(x)∥Y
∥x∥X

where f : X → Y maps between two normed vector spaces. Other properties of the domain and
codomain we can consider include continuity, topology, boundedness, metric, etc.

Here, we will use the fact that R has sums, scalar multiples, products, and limits to develop
the Hilbert space of random variables H := L2(Ω;R), which is equipped with an inner product
⟨X, Y ⟩ := E(XY ). We will see how we can leverage geometric intuition for random variables,
then find a solution to the motivating problem of linear least squares error estimation.

2 Preliminaries

The prototypical example to keep in mind is n-dimensional Euclidean space Rn. Even if there are
key distinctions between finite-dimensional and infinite-dimensional vector spaces, the geometric
intuition of “arrows in space” may still prove useful.

2.1 Linear algebra

Definition 1 (Real vector space).
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A real vector space is a set of vectors equipped with two operations, vector addition and
scalar multiplication, where elements in R are called scalars. The properties a vector space
satisfy are listed below, though for your reference only.

• Vector addition v + w is closed, associative, has an identity element (the zero vector),
and associates an inverse element −v to each vector v.

• Scalar multiplication c · v is closed, compatible with the multiplication of real numbers,
compatible with unity (the scalar 1), and distributive over vector addition.

Every finite-dimensional real vector space is isomorphic, or equivalent up to relabelling the vectors,
to the Euclidean space (Rn,+, ·) for some n. These vectors can thus be represented as tuples
v = (x1, . . . , xn). However, function spaces are often infinite-dimensional, which we define below.

Definition 2 (Linear combination; span; linear independence).

• A linear combination v of v1, . . . , vn is any result of addition and scalar multiplication
applied to those vectors:

v =
n∑

i=1

civi = c1v1 + · · ·+ cnvn.

An equation involving linear combinations is a linear relation, or less commonly a “linear
dependence,” among the constituent vectors.

• The span of a set of vectors S is the set of all possible linear combinations that can be
formed from vectors in S:

span(S) := {c1v1 + · · ·+ cnvn : ci ∈ R, vi ∈ S, n ∈ N, i = 1, . . . , n} .

The span of S is also the minimal vector subspace that contains S, the set of “all vectors
that S can reach.” A subspace is simply a subset of V that is a vector space itself.

• A set of vectors S is linearly independent if there is no nontrivial linear relation among
them, i.e. if there is no equation of the form

c1v1 + · · ·+ cnvn = 0

for some nonzero ci, so that no vector is “redundant information.”

Definition 3 (Basis; dimension).

• A basis is a set of vectors that spans the whole space and is linearly independent. Every
vector can be written as a unique linear combination of basis vectors.

• The dimension of a vector space is the size of any basis, which is well-defined as every
basis has the same size!
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2.2 Inner product spaces

Definition 4 (Real inner product space).

A real vector space may be equipped with an inner product ⟨·, ·⟩ : V ×V → [0,∞) to become
an inner product space. For any u, v, w ∈ V and c, d ∈ R, the inner product satisfies

1. Positive definiteness. ⟨v, v⟩ ≥ 0, with ⟨v, v⟩ = 0 iff v = 0.

2. Bilinearity. ⟨cu+ dv, w⟩ = c ⟨u,w⟩+ d ⟨v, w⟩.

3. Symmetry. ⟨u, v⟩ = ⟨v, u⟩.

The motivating example of the inner product is the dot product in Euclidean space Rn,

u · v = uTv =
n∑

i=1

uivi.

From the inner product, we can derive the ideas of length, distance, angle, and orthogonality for
general inner product spaces, some of which might not seem geometric in nature.

Definition 5 (Norm; metric; angle; orthogonality).

The norm, length, or magnitude of a vector v is ∥v∥ =
√
⟨v, v⟩, where the following hold.

1. Positive definiteness. ∥v∥ ≥ 0, with ∥v∥ = 0 iff v = 0.

2. Homogeneity. ∥cv∥ = |c| · ∥v∥.

3. Triangle inequality. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

The metric or distance between two vectors v and w is induced as d(v, w) = ∥v − w∥. We
can also define the angle θ between two vectors from the equation

⟨u, v⟩ = ∥u∥ ∥v∥ cos θ.

Finally, two vectors u and v are orthogonal, denoted u ⊥ v, if ⟨u, v⟩ = 0.

The inner product space we will consider also has the property of completeness*: if the distances
between vectors in a sequence become arbitrarily small, then the sequence indeed converges.
Such an inner product space is called a Hilbert space.

Definition 6 (Orthogonal set; unit vector; orthonormal basis).

A set of vectors is orthogonal if ⟨vi, vj⟩ = 0 whenever i ̸= j. A vector is a unit vector if
its norm is 1. An orthonormal set of vectors is an orthogonal set of unit vectors.

Proposition 1 (Orthogonality implies linear independence).
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An orthogonal set of vectors is linearly independent, but not necessarily the converse. So, an
orthogonal set that spans the whole space must also be an orthogonal basis.

Proof. Suppose that c1v1 + · · · cnvn = 0, and for any j = 1, . . . , n consider the inner product

0 =

〈
n∑

i=1

civi, vj

〉
=

n∑
i=1

ci ⟨vi, vj⟩ = cj ⟨vj, vj⟩ .

The zero vector cannot belong to an orthogonal set of vectors, so vj must be nonzero. Then the
coefficients cj must be identically zero, which proves linear independence. For a counterexample
to the converse, consider the vectors (1, 0) and (1, 1) in R2.

Proposition 2 (Properties of orthonormal bases).

Let {v1, . . . , vn} be an orthonormal basis of V . Then the following hold.

a. Unitariness. ⟨vi, vj⟩ = 1i=j for every i and j.

b. Unique basis representation. For any w ∈ V ,

w =
n∑

i=1

⟨w, vi⟩ vi, ∥w∥ =
n∑

i=1

⟨w, vi⟩2 .

c. Orthogonal decomposition. For any w ∈ V , and for any partition of the basis vectors
such that U = span {v1, . . . , vk} and U⊥ := span {vk+1, . . . , vn},

w = (w|U) + (w|U⊥) :=
k∑

i=1

⟨w, vi⟩ vi +
n∑

i=k+1

⟨w, vi⟩ vi,

where the two components of the sum w|U and w|U⊥ are orthogonal to each other.

Proposition 3 (Gram–Schmidt procedure).

From any basis {v1, . . . , vn}, we can find an orthogonal basis {e1, . . . , en} as follows.

1. Set e1 := v1.

i. For each i = 2, . . . , n, set ei := vi −
∑i−1

j=1 ⟨vi, ej⟩ ej.

We can normalize, divide by the norm to result in a unit vector, at each step or at the end,
to obtain an orthonormal basis. If we also discard redundant, or linearly dependent, vectors,
we can turn any spanning set into an orthonormal basis.

A key invariant of the procedure is that the span is preserved at every step: span {v1, . . . , vi} =
span {e1, . . . , ei} for every i = 1, . . . , n.
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Optionally, compare the Gram–Schmidt procedure to the disjointization of a countable union or
the chain rule for entropy. At each step, some degree of redundancy is removed: the linear
combination in vi −

∑i−1
j=1 ⟨vi, ej⟩ ej, the union in An \

⋃n−1
i=1 An, or the mutual information in

H(Xn)− I(Xn;X1, . . . , Xn−1). The now-“independent” components share a similar invariant:

span {e1, . . . , ei}⊥ = span {v1, . . . , vi}
n⋃

i=1

Bi =
n⊔

i=1

Bi =
n⋃

i=1

Ai

k∑
i=1

H(Xi | X1, . . . , Xi−1) = H(X1, . . . , Xk).

This same motif will become important in finding the innovation for LLSE. By Proposition 2,
orthogonalization is incredibly helpful in decomposing a vector into individual components which
can be simply summed. We present a key example in the following subsection.

2.3 Orthogonal projections

Definition 7 (Orthogonal projection).

The orthogonal projection of a vector v onto a subspace U is the vector in U that minimizes
the distance from v to any vector in U :

projU(v) := argmin
u∈U

∥v − u∥2 .

For example, sunlight casts three-dimensional objects onto the two-dimensional surface of the
ground as shadows. The orthogonal projection of a street light pole is the tip of its shadow when
cast by the sun directly overhead: the tip of the shadow is closest to the tip of the pole.

Proposition 4 (Properties of orthogonal projections).

a. The orthogonal projection is unique.

b. Let {u1, . . . , un} be an orthonormal basis for U . Then projU(v) =
∑n

i=1 ⟨v, ui⟩ui.

c. A vector w is equal to projU(v) if and only if w ∈ U and v − w ⊥ u for all u ∈ U .

The proofs are left as exercises. As a hint, consider the following equation, where ∥·∥2 = ⟨·, ·⟩:

∥v − u∥2 = ∥(v − projU(v)) + (projU(v)− u)∥2 .

We also invite you to try your hand at the following exercises.

• The zero vector 0 is orthogonal to every vector, and is the unique vector orthogonal to itself.

• Pythagorean theorem. If u and v are orthogonal, then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.
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• Cauchy-Schwarz inequality. |⟨u, v⟩| ≤ ∥u∥ ∥v∥. Equivalently, ⟨u, v⟩2 ≤ ⟨u, u⟩ ⟨v, v⟩.

• Parallelogram equality. ∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2).

• The projection operator projU is a linear transformation.

3 Definition and properties

The majority of the work was done in the preliminary section. We only need to apply the machinery
to the random variables {X : Ω → R}, and we are free to wander the probabilistic playground.

1. First, we can define sums X+Y , scalar multiples cX, and products XY of random variables,
which makes the function space {X : Ω → R} a vector space.

2. We may then notice that covariance, which is bilinear and symmetric, is a good candidate
for an inner product. However, covariance is not positive definite: cov(X,X) = var(X) = 0
only implies that X is almost surely constant, not surely zero.

However, if we pretend that every random variable is zero-mean, then cov(X, Y ) = E(XY )
is positive definite. It turns out that in general, ⟨X, Y ⟩ = E(XY ) defines an inner product:
it is positive definite, as E(X2) implies X a.s.

= 0.

3. It is still possible that the inner product is not always defined. By the Cauchy-Schwarz
inequality for expectation,

⟨X, Y ⟩ = E(XY ) ≤
√

E(X2)
√

E(Y 2) = ∥X∥ ∥Y ∥ .

So, if we want every inner product E(XY ) to remain finite, we must require that ∥X∥ < ∞.
Equivalently, we need every random variable to have finite second moment:

L2(Ω;R) :=
{
X : Ω → R | E(X2) < ∞

}
.

4. The final point is a bit subtle: the “inner product” is not truly positive definite unless X a.s.
= 0

implies X = 0. So, we take two random variables to be equal if they are almost surely equal,
which turns out also guarantees the completeness of our space.

L2(Ω;R) := L2(Ω;R) / a.s.
= .

Definition 8 (Hilbert space of random variables).

The Hilbert space of random variables is H := L2(Ω;R).

Proposition 5 (Connections between expectation, covariance, and orthogonality).

a. X is orthogonal to itself, or any scalar multiple cX, iff it is equal to zero.

b. Zero-mean is equivalent to orthogonal to 1.

c. The inner product is equal to the covariance iff one or both of X and Y is zero-mean.

6



d. As a special case, the norm is equal to the standard deviation iff X is zero-mean.

e. cos θ is equal to the correlation coefficient ρ when X and Y are both zero-mean.

f. Uncorrelated random variables X and Y are orthogonal iff X or Y is zero-mean.

As exercises in becoming familiar with the definitions, verify that H is actually a real inner product
space, and prove Proposition 5 above.

The zero-mean assumption is so helpful that we may also consider the space of centered or
demeaned random variables H/R, in which two random variables are equivalent if they differ
by a constant. Then the picture is greatly simplified: covariance is the inner product, standard
deviation is the norm, uncorrelatedness is orthogonality, and all affine functions are linear.

One final interesting connection: independence is often denoted X ⊥⊥ Y to indicate an intuitive
orthogonality in the information given by X and Y . Here, though, independence implies uncor-
relatedness, which gives orthogonality X ⊥ Y in the zero-mean case, and orthogonality then
always implies linear independence.

■
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