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1 Introduction

The Kalman filter (KF) is an algorithm that tracks an estimate of the state of a stochastic
dynamical system, given a sequence of noisy observations of the state over time. It is a recursive,
online, and efficient filter: it repeatedly calls itself to work with a stream of observations in real
time, with little computational need, and filter out the effects of random noise.

The state estimate of the Kalman filter is linear in the observations, and optimal in minimizing
the quadratic cost function of mean squared error, so the Kalman filter is also called the linear-
quadratic estimator (LQE) and finds itself in fields such as control theory, signal processing, and
econometrics. Here, we will present two derivations of the KF, both based on LLSE.

The Kalman filter is very generalizable, but in this note we will work in discrete time, work with
time-homogeneous models, and focus on the one-dimensional scalar case.

a. State and observation: Xn, Yn, A, C, Vn, Wn.

b. Control and feedback*: Un, B, F .

c. Estimation and error: X̂n|n, X̂n|n−1, σ2
n|n, σ

2
n|n−1, Σn|n, Σn|n−1.

d. Innovation and gain: Ỹn, Kn.

2 Algebraic derivation

2.1 State and observation

Definition 1 (State; dynamics; process noise).

The states of the dynamical system are random variables (Xn)n∈N, where X0 is usually given,
but (Xn)n≥1 are unknown random variables to be estimated. Xn most commonly describes
some sort of position, velocity, or acceleration at time n.
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The dynamics or transition model is a scalar A that describes how the state evolves over
time, often describing a physical model such as x = x0 + vt + 1

2
at2. We assume that A is

constant by time-homogeneity, but we may use (An)n∈N if necessary.

The process noises are random variables (Vn)n≥1 assumed to be independent of the states
and i.i.d. asN (0, σ2

V ). The precise distribution is less important than the variance σ2
V , though

when X0 is Gaussian, Kalman filtering with Gaussian noise is exactly the MMSE.

The states, dynamics, and process noises are related by the state-transition equation

Xn = AXn−1 + Vn, n ≥ 1.

In the vector case, the states Xn and process noises Vn are random vectors in Rd for d ≥ 1, and
the dynamics is a constant matrix A ∈ Rd×d.

Definition 2 (Observation; observation model; observation noise).

The observations or measurements (Yn)n≥1 are random variables known to the algorithm,
commonly values taken from sensors or collected data.

The observation model is also a scalar C that describes how observations are derived from
the true state (deterministically). The observation noise or measurement noise (Wn)n≥1,
i.i.d. as N (0, σ2

W ) and independent of all other r.v.s, models the uncertainty of measurement.

The observations, observation model, and observation noises are related analogously to the
underlying dynamical system by the state-observation equation

Yn = CXn +Wn, n ≥ 1.

We will assume without loss of generality that C = 1, as we can rescale the observations Yn and
the observation noise variance σ2

W if necessary.

In the vector case, the observations Yn and observation noises Wn are random vectors in Re,
where e does not have to equal d. For instance, there could be multiple redundant sensors for a
state entry, or no sensors measuring the entry at all. The observation model is a matrix C ∈ Re×d.

X0 X1 X2 X3 · · ·

Y1 Y2 Y3 · · ·

Figure 1: A graphical summary of the states and observations.
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Note that the filter assumes the underlying stochastic dynamical system is linear. In real systems,
nonlinear dynamics might be incorporated into the random process noise instead of the model,
which can greatly worsen the performance of the filter.

Other modelling assumptions we leave you to consider: how could we deal with constant drift
or offset in the states? Should we incorporate varying drift into the state or the process noise?
How can we describe time-inhomogeneous process or observation noise?

We leave the following exercises in working with one-step recurrence relations and induction.

a. Find Xn in closed form in terms of A, X0, and (Vk)
n
k=1.

b. Find E(Xn) in terms of A and E(X0).

c. Find var(Xn) in terms of A, var(X0), and ΣV .

d. Find limn→∞ var(Xn) for a stable system, in which |A| < 1.

2.2 Control and feedback*

Definition 3 (Control).

A more general state-transition equation includes the random variables of control inputs
(Un)n≥1, and the matrix of the control-input model B:

Xn = AXn−1 +BUn +Wn, n ≥ 1.

Definition 4 (Open-loop control; closed-loop control).

There are two broad types of control: the control input Un is independent of the state Xn−1 in
open-loop control, while Un is some function of Xn−1 in closed-loop or feedback control,
often a linear function Un = FXn−1. The closed-loop transition model

Xn = (A+BF )Xn−1 +Wn

allows for a greater degree of self-correction or self-stabilization of a system.

2.3 Estimation and error

Definition 5 (State estimate).

The goal of the Kalman filter is to track the optimal estimate X̂n of the state Xn at every
time step n ≥ 1, given the history or trajectory of observations Y (1:n) = (Y1, . . . , Yn):

X̂n = X̂n|n := argmin
f(·) affine

E
(∥∥Xn − f(Y (1:n))

∥∥2
)
.
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In the vector case, the objective function is the more general norm-squared E(∥Z∥2) = E(ZTZ).
What does the affine function f(Y (1:n)) look like for scalar Y1, . . . , Yn? What about for random
vectors Y1, . . . , Yn with different dimensions from Xn?

We can directly find that X̂n|n = L(Xn | Y (1:n)), but LLSE requires knowledge about Xn that
the algorithm does not have. Instead, we must find X̂n|n using known terms like A.

Definition 6 (State prediction).

The prediction of the state Xn at time step n, given observations up to time k < n, is

X̂n|k := L(Xn | Y1, . . . , Yk).

We leave the reader to verify that X̂n|k = An−kX̂k|k. The independent, zero-mean process noises
“disappear” from the prediction, leaving only the best known estimator X̂k|k “advanced by n− k
time steps in the model.” Often, the prediction will simply refer to X̂n|n−1 = AX̂n−1|n−1.

Definition 7 (Estimation variance; prediction variance).

The estimation variance at time n is the variance of the estimation residual,

σ2
n|n = Σn|n := var(Xn − X̂n|n).

We leave the reader to check that σ2
n|n = E((Xn − X̂n|n)

2). Defined similarly, the prediction
variance at time n, with observations up to time k < n, is

σ2
n|k = Σn|k := var(Xn − X̂n|k).

Definition 8 (Estimation error; prediction error).

The estimation error at time n is E(∥Xn − X̂n|n∥2), the minimum value of the filter’s mean
squared error cost function. The prediction error is defined analogously.

In the scalar case, the estimation variance is precisely the estimation error. In the vector case, the
estimation variance is the matrix Σn|n, and the estimation error is E(∥Xn − X̂n|n

2∥) = tr(Σn|n).
We leave these as exercises in the orthogonality principle and the cyclic property of the trace.

2.4 Innovation and gain

Let us now dissect X̂n|n = L(Xn | Y1, . . . , Yn). A first step in finding the LLSE is to orthogonalize
{1, Y1, . . . , Yn} by the Gram–Schmidt procedure to obtain the innovations {1, Ỹ1, . . . , Ỹn}:

Ỹn = Yn − L(Yn | Y1, . . . , Yn−1) = Yn − CX̂n|n−1.

Note the definition of Yn, X̂n|n−1, and the linearity of LLSE estimation.
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Now, we can split the projection of Xn onto span {1, Ỹ1, . . . , Ỹn}:

proj{1,Ỹ1,...,Ỹn}(Xn) = proj{1,Ỹ1,...,Ỹn−1}(Xn) + proj{Ỹn}(Xn)

= AX̂n−1|n−1 +KnỸn.

We intentionally split the projection into only two parts so that the filter is recursive and online.
The first term can be found recursively using X̂n−1|n−1, and the second term can be found as the
new observation Yn arrives or is made available.

The projection of Xn onto the span of Ỹn, which is zero-mean, must be some linear transformation
of Ỹn, written KnỸn. Then the Kalman gain at time n is the scalar, or matrix, Kn.

We can derive the scalar gain Kn using the formula for an orthogonal projection onto a single
zero-mean random variable. Note below that X̂n|n−1 is orthogonal to Ỹn:

Kn =
cov(Xn, Ỹn)

var(Ỹn)
=

cov(Xn − X̂n|n−1, CXn +Wn − CX̂n|n−1)

var(CXn +Wn − CX̂n|n−1)

=
C var(Xn − X̂n|n−1)

C2 var(Xn − X̂n|n−1) + var(Wn)

=
σ2
n|n−1

σ2
n|n−1 + σ2

W

.

The scalar Kalman gain 0 ≤ Kn ≤ 1 can be thus interpreted as a learning rate, the proportion
of information that can be gained from the new observation Yn. The gain can also be manually
tuned to “favor” the existing prediction X̂n|n−1 or the innovation Ỹn.

In the vector case, we find the very similar formula Kn = Σn|n−1C
T
[
(CΣn|n−1C

T + ΣW )−1
]
.

In summary, the estimate of the true state at time n is a weighted average of the prediction
from the previous estimate at time n− 1 and the new observation at time n.

“The optimal estimate of Xn lies between prediction and observation.”

X̂n|n = X̂n|n−1 +KnỸn = (I −Kn)X̂n|n−1 +KnYn

Make sure you are comfortable with the derivation above! We leave the following checks:

e. Prove the orthogonal update: if Xn is zero-mean, then X̂n|n = X̂n|n−1 + L(Xn | Ỹn).

f. Find E(X̂n|n) in terms of A and E(X0). Hint: you have already found this previously.

g. Find a linear recurrence relation for X̂n|n in terms of only A, Kn, and Yn.

5



2.5 Prediction and update

The Kalman filter algorithm is most often carried out in two phases: prediction and update,
also called propagation and correction. The phases typically alternate, but we can also predict
several steps in advance without incorporating any new observations, or update several times in
sequence to account for multiple newly available observations.

Throughout, we will keep track of the state estimate X̂n|n and the estimation variance Σn|n. At
initialization, we set X̂0|0 ← E(X0) and Σ0|0 ← var(X0).

In the prediction phase after time step n − 1, we have access to (X̂n−1|n−1,Σn−1|n−1). We can
find the predicted or a priori state estimate and estimation variance:

X̂n|n−1 ← AX̂n−1|n−1

σ2
n|n−1 = var(Xn − X̂n|n−1)

= var(A(Xn−1 − X̂n−1|n−1) + Vn)

← A2σ2
n−1|n−1 + σ2

V

Interestingly, we can already find the Kalman gain here:

Kn ←
σ2
n|n−1

σ2
n|n−1 + σ2

W

.

In the update phase at time step n, we have found (X̂n|n−1,Σn|n−1), and the new observation
Yn = CXn +Wn becomes available. We can then find the innovation, and the a posteriori state
estimate and estimate variance:

Ỹn ← Yn − CX̂n|n−1

X̂n|n ← X̂n|n−1 +KnỸn

σ2
n|n = var(Xn − [(I −KnC)X̂n|n−1 +KnYn])

= var((I −KnC) · (Xn − X̂n|n−1)−KnWn) = · · ·
← (I −Kn) · σ2

n|n−1.

The algorithm is quite space-efficient: it does not need to store any past estimates or observations.
It is also time-efficient: only the computation of X̂n|n is online. The Kalman gains Kn, estimation
variances σ2

n|n, and prediction variances σ2
n|n−1 can all be recursively found and stored offline.

3 Geometric derivation

We can also derive the scalar Kalman filter equations by leveraging geometry in the Hilbert space
of random variables. Make sure you know which orthogonality relations hold — the dimension of
span {1} is omitted, and not all orthogonal projections are drawn vertically! These diagrams are
visualizations of infinite-dimensional subspaces after all.
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0 X̂n|n−1

Ỹn Yn

KnỸn X̂n|n

Xn

Wn

Figure 2: X̂n|n is the orthogonal projection of Xn onto span {1, Y1, . . . , Yn−1} ⊕ span {Ỹn}.

Let us first see what the length of the only term involving Kn is equal to:∥∥∥KnỸn

∥∥∥ =
∥∥∥X̂n|n − X̂n|n−1

∥∥∥ = Kn

∥∥∥Yn − X̂n|n−1

∥∥∥ .
Now, we can leverage the similiarity between two triangles: the “smaller” (X̂n|n−1, X̂n|n, Xn) and
the “larger” (X̂n|n−1, Xn, Yn), both of whose hypotenuses are known.

Kn =

∥∥∥X̂n|n − X̂n|n−1

∥∥∥∥∥∥Yn − X̂n|n−1

∥∥∥ =

∥∥∥X̂n|n − X̂n|n−1

∥∥∥∥∥∥Xn − X̂n|n−1

∥∥∥
∥∥∥Xn − X̂n|n−1

∥∥∥∥∥∥Yn − X̂n|n−1

∥∥∥
=


∥∥∥Xn − X̂n|n−1

∥∥∥∥∥∥Yn − X̂n|n−1

∥∥∥
2

=
σ2
n|n−1

σ2
n|n−1 + σ2

W

.

By the Pythagorean theorem applied to the “smaller” triangle, we can also find

σ2
n|n =

∥∥∥Xn − X̂n|n

∥∥∥2

=
∥∥∥Xn − X̂n|n−1

∥∥∥2

1−

∥∥∥X̂n|n − X̂n|n−1

∥∥∥2

∥∥∥Xn − X̂n|n−1

∥∥∥2


= (1−Kn) · σ2

n|n−1.

In order to find σ2
n|n−1, we will need to draw Xn−1, which introduces a possible new dimension.

The following diagram is slightly “rotated towards the reader” from the diagram above; note the
different “vertical” projections in the two diagrams.
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0 X̂n−1|n−1X̂n|n−1

Xn−1

AXn−1

Xn

∆n|n−1

Vn

∆n−1|n−1

Figure 3: The difference between AXn−1 and the prediction X̂n|n−1 is orthogonal to the noise Vn.

Applying the Pythagorean theorem to the triangle formed by (AXn−1, X̂n|n−1, Xn), and leveraging
the similarity of the other two triangles, we find that

σ2
n|n−1 =

∥∥∆n|n−1

∥∥2
=

∥∥∥AXn−1 − AX̂n−1|n−1

∥∥∥2

+ ∥Vn∥2

= A2σ2
n−1|n−1 + σ2

V .

4 Summary

For time steps n ≥ 1, the states and observations are given by the following equations.

Xn = AXn−1 + Vn

Yn = CXn +Wn.

We initialize the state estimate and estimation variance as (X̂0|0,Σ0|0)← (E(X0), var(X0)). The
Kalman gains and estimation variances can be found offline as follows.

σ2
n|n−1 = A2σ2

n−1|n−1 + σ2
V (prediction)

Kn = σ2
n|n−1(σ

2
n|n−1 + σ2

W )−1 (gain)

σ2
n|n = (I −Kn) · σ2

n|n−1 (update)

The state estimates are updated online as new observations arrive.

X̂n|n−1 = AX̂n−1|n−1 (prediction)

Ỹn = Yn − X̂n|n−1 (innovation)

X̂n|n = X̂n|n−1 +KnỸn (update)

■
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